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Abstract. We consider the electroweak theory with an additional neutral vector boson Z’ at one loop. We
propose a renormalization scheme which makes the decoupling of heavy Z’ effects manifest. The proposed
scheme justifies the usual procedure of performing fits to the electroweak data by combining the full SM
loop corrections to observables with the tree-level corrections due to the extended gauge structure. Using
this scheme we discuss in the model with extra an U (1)/ group factor one-loop results for the p parameters

defined in several different ways.

1 Introduction

For various reasons new physics is expected to show up
at the TeV scale. One of the possibilities, not the least
likely one, is that extra gauge boson with masses ~ 1 TeV
should be discovered. They are predicted by various string
inspired models as well as by some models aiming at solv-
ing the hierarchy problem of the SM. Here belong for ex-
ample Little Higgs models [1] or models combining super-
symmetry with the idea of the Higgs doublet as a pseudo-
Goldstone boson [2, 3]. Before the advent of the LHC, the
electroweak data are used to constrain parameter spaces of
such models.

The standard methodology used in testing models of
new physics against the electroweak data is that one com-
bines the full one-loop (and also dominant two-loop) cor-
rections to the relevant observables calculated within the
SM with modifications stemming from new physics (new
gauge bosons, new fermions, etc.) accounted for at the tree
level only. Given that the top quark mass is known fairly
well, this allows one to constrain other parameters of these
models [4].

However, some doubts have been expressed in the lit-
erature [5—7] about the validity of this standard approach
in models with extended gauge sector. In particular, it
has been argued that this approach is not valid in theo-
ries in which at the tree level p # 1 since then the entire
structure of loop correction is altered and the Appelquist—
Carrazzone decoupling does not hold.

To investigate the problem in more detail we consider
in this paper the simplest extension of the SM with an ad-
ditional U(1)g gauge group and study the one-loop renor-
malization of the model.! We propose a renormalization
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1 For earlier discussions of the renormalization of the SU(2) x
U(1)1 x U(1)2 models see [8,9].

scheme in which the Appelquist—Carrazzone decoupling is
manifest. It combines the on-shell renormalization for the
three input observables for which we conveniently choose
agm, Gr and My with the MS scheme for the additional
parameters introduced by the extended gauge sector. The
final expressions for measurable quantities are such that

— they coincide with the SM expression for Mz — oco;

— explicit renormalization scale dependence is only in the
Mz suppressed terms;

— they are scale independent when the RG running of
the parameters is taken into account. Tadpoles play the
crucial role here.

Our scheme can be contrasted with other renormalization
schemes used in the literature in which the explicit de-
coupling of heavy particles (Z') is lost because also the
couplings related to the extended gauge sector (couplings
of the U(1)g gauge boson) are expressed in terms of the
low energy observables additional to agy, Gy and Mz (or

Myy), like sin® 5% or p. Our scheme can universally be used

for Mz ~ M zo or Mz > M zo whereas the other ones are
practical only for Mz ~ M,o. Indeed, for Mz > M 4o,

using e.g. sin’ 5% as an additional input parameter for fix-
ing the coupling of Z’ leads, because of the lack in such
a scheme of explicit Appelquist—Carrazzone decoupling,
to uncertainties which become larger the larger is the Z’
mass. The scheme proposed in this paper allows us to di-
rectly constrain by the electroweak data the MS running
parameters of the extended model at a conveniently cho-
sen renormalization scale p, with agy, Gy and My cho-
sen as input observables. Furthermore, for Mz > M0 it
lends justification to the standard approach to testing such
a model against electroweak data and makes it rigorous by
specifying what parameters are being constrained.

As an illustration of the use of our renormalization
scheme and in order to demonstrate that it leads to ex-
plicit Appelquist—Carrazzone decoupling we clarify vari-



188

ous aspects of the p parameter(s) in the SU(2) x U (1)1 x
U(1)2 model. First of all, we discuss in detail various def-
initions of p and the corresponding tree-level results. In-
terestingly enough, there exists a definition of p in terms
of the low energy neutral to charged current ratio for neu-
trino processes which leads to pjow = 1 as in the SM. Next,
we calculate loop corrections to these different p param-
eters and show that in the renormalization scheme with
explicit Appelquist—Carrazzone decoupling the celebrated
m?/ m%v contribution is always present. The milder, loga-
rithmic dependence on m; claimed in [5,6] is an artifact
of the renormalization scheme in which there is no explicit
Appelquist—Carrazzone decoupling.

We also elucidate some specific technical aspects of
a theory with U(1); x U(1)2 group factor related to the
mixing of the two corresponding gauge bosons resulting in
some peculiarities of the RG running of the U(1) gauge
couplings.

The plan of the paper is as follows. In Sect. 2 we re-
call the general structure of the U(1); x U(1)2 gauge the-
ory and introduce effective charges which allow one to
cast the Lagrangian in a simple form. We express the
renormalization group equations for the U(1) couplings
in terms of these effective couplings. We also introduce
the simplest extension of the SM by an extra U(1) group
factor (with an SU(2) singlet scalar vacuum expectation
value (VEV) breaking the extra U(1)) which will serve us
as a laboratory to illustrate our main points concerning
the loop corrections to electroweak observables. In Sect. 3
we define different p parameters, calculate them at tree
level in the model introduced in Sect. 2 and show that the
leading order contribution of Z’ to these parameters can
be also obtained in the approach using the Appelquist—
Carrazzone decoupling. In Sect. 4 we define our renormal-
ization scheme, and apply it in Sect. 5 to calculate the cor-
rections to the low energy p parameter defined in terms
of the neutrino processes. In Sect. 6 we illustrate the in-
terplay of the proposed scheme with the renormalization
group equations derived in Sect. 2 on the one-loop calcu-
lation of the Z° mass. Finally, in Sect. 7 we briefly discuss
the calculation of the dominant top—bottom contribution
to the parameter p defined in terms of the Z°, W+ gauge
boson masses and sin’ 0's parametrizing the coupling of
the on-shell Z° to leptons. Several appendices contain tech-
nical details necessary in the analyses presented in the
main text.

2U(1)1 X U(1)2 gauge theory:
couplings and their RG equations

The most general kinetic term for two U(1) gauge fields has
the form

. 1 1 1
kin __ 1 1 2 £2 1 2
L __Zf,u,t/ ;J,V_pr,u uu_i’l{fw/ T2

(1)

Kk is a real constant constrained by the condition |x| < 1.
The most general covariant derivative of a matter field )y

P.H. Chankowski et al.: Z’ and the Appelquist—Carrazzone decoupling

is

2 2

Du=0,+i» > YigmAl,

a=1b=1

(2)

where the constants ;¢ play the role of the U(1) charges
of 15, and g, are the coupling constants (running couplings

in the MS renormalization scheme). The gauge transform-
ations then are

A% = A% +0,6%,

2 2
Wi, — exp (—i 3N Y,;‘gabeb> U -

a=1b=1

3)

The existence of a whole matrix g, of couplings in place
of only one gauge couplings per each U(1) group factor is
a peculiarity of the theory with multiple U(1)’s [10,11].
Even if not introduced in the original Lagrangian, the last
term in (1) and the matrix g, of couplings are generated in
the effective action by radiative corrections.

To have simple forms for the tree-level propagators, it is
convenient to work in the basis in which the tree-level ki-
netic mixing is removed.? By expressing the original A}L’Q
fields in terms of the new fields denoted by A and A% (be-
cause they will play the roles of the weak hypercharge and
extra U(1) gauge bosons, respectively), we have

1 1
Al = —— AV AP
P20 +k) M 2(1-k) M
A2

:;AY—;AE

and the kinetic cross term disappears (but there will be
a counterterm —(1/2)6Z f£ f,) and the general form (2)
of the covariant derivative does not change. Thus, for each
matter field & there are charges YkE and YkY and there are
four couplings gvy, gve, gry, geg. Only three of them
are independent [10]: the U (1) gauge fields can be rotated:
AY = cos9AY —sin¥ AP, AF =sin9AY + cos¥AF, with-
out reintroducing the kinetic cross term, and such a rota-
tion induces the corresponding rotations of couplings

gyy\ _ cos?d sind Jgvy
gYE “ \—sin?d cos? 9YE
Jgey\ _ cos?d sind JEY
gEE ~ \—sin?® cost JEE :

The angle ¢ can be chosen so that one of the four couplings
vanishes. It is also easy to check that the combinations

(4)

()

955+ 98y,

9yv+9ve

JEEdYY —JEYJYE,

(6)

9YEJEE + 9EYGYY,

are the invariants of the rotations (5).

2 Tt is also possible to work with non-diagonal kinetic
terms [11, 12].
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The renormalization group equations for the couplings
gap can be computed in the standard way [10,11] with the
result

d
M dugba— 16 2 Zgbc

c,d,e

2
X 3 zf: (Y}dY} 3 Z YdYe 9dcYea »

(7)

where the first sum is over left-chiral fermions and the sec-
ond one over complex scalars of the theory.

As an realistic extension of the SM we consider a theory
with the SU(2)r, x U(1)y x U(1)g electroweak symmetry
spontaneously broken down to U(1)gm. The required sym-
metry breaking is ensured by vacuum expectation values
of the SU(2) doublet H and of the singlet S. We assume
that S is charged under only one U(1), that is Y& =0 (but
YY #0and Y4 #0), so that (S) = vs/+/2 leaves unbroken

SU(2)L, x U(1)y. It is then convenient to make the orth-
ogonal field redefinition (which does not reintroduce the
kinetic mixing term)

_ 9eBA[ +gRvA)

E, = , B, =
vV 912'3E+92EY

—95vAY +gppAY

vV Q%E +92EY 7
(8)

where F, is the combination which becomes massive after
U(1)g breaking by vg # 0, and B,, will play the role of the
weak hypercharge gauge field. The couplings of the generic
matter field ¢, to £, and B,, are then given by

ngkB,u + (gEYkE +9/ka) E;L ’ (9)
where

9EEJYY — 9EYJYE

V9EE+ 98y
[4ptlge = \/9%E + 9By

g = 9YEJEE + JEYIYY
V9%e+ 9By

are invariants of the transformations (5). Because only
three couplings are physical the last invariant, g3+ ¢35
in (6), which does not enter the definitions of g,, gr and ¢/,
can be expressed in terms of these:

gy =

(10)

(11)

From (9) it follows that Y} corresponds to the SM hy-

percharge. We assume therefore, that the factors Yk are as
in the SM, in particular, ¥ = 2 It will also prove conve-
nient to mtroduce effective charges e; and to rewrite the
couplings of matter fields to the extra gauge boson E,, in
the form

9y +9ve= 9y+9

grer = gpYE +4'Y . (12)
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With the factors e; the matter Lagrangian can be written
in the naive form (frequently used in the literature [13, 14])
as if there were no mixing of the two U(1) group factors.
It is however important to remember that the ey are just
a means to compactly write the couplings. They are not
quantum numbers (charges) — except for eg which is con-
stant. They do run with the scale: their RG running can be
determined from the running of ggg, gvy, 9ey, gy and
of JEe.

The closed system of the RG equations for the three
couplings (10) can be readily derived from the general for-
mula (7). Note that these couplings are defined at any
renormalization scale p in the (rotating) basis in which the
kinetic mixing term is absent. Using (11) one finds

d
gE—AEEg3 +2AEYg2Eg/+AYYgEg/2

at
jt =AYYg3, "
jtg =AYVg' (9% +2g5) +24% g5 (9" + g;)
+APPghd,
where
;Z (YFY7) + Z Yoy . (4)

f s

With the identification of YkY as SM hypercharges, the
running of g, is exactly as in the SM. This could be ex-
pected because of the U(1) Ward identity, which ensures
the absence of threshold corrections to g, when the heavy
massive E,, field is decoupled.

In the calculations presented in the following sections
we will need RG equations for the combinations e%g% and
e2,g% defined by (12). Using (13) and (14) these RG can be

also expressed in terms of the effective couplings (12):

d 2 1
3¢50 =2ek0k | 3D _(er90)*+3 D (esgn)?
f s

d 2 1
dteHgE = 2397, 3 Z(eng)2 T3 Z(eng)2
f s
+4€HgE

2 1
32 eramY Yy + 2> ewgnYI Vi | g,
f s

(15)

Finally, we recall the formulae derived in [13] for gauge bo-
son masses appearing as a result of the electroweak break-
ing by (S) = vs/v2 and (H®) = vy /+/2. The W* boson
mass is given as in the SM by M3, = ig%v%, whereas
the mass matrix of the neutral gauge bosons in the basis
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(Bu, W2, E,,) reads

Mneut
1 2 1 2
ZgyUH —19y92Vg 39y9ECHVE
1 2 1.2 2 1 2
—29y92Vg 1920y —5929E€HVY
1 2 1 2 2 2,2 2,2
§gygE€H’UH —§QQQE€H’UH gE (eHUH+€SUS)

(16)

It is diagonalized by two successive rotations so that the
mass eigenstates are given by

B, ¢ —sc  ss A,
Wil=|s e —c'||2Z)], (17)
E, 0 d Z,

where ¢ = cos Oy, s = sin fw are as in the SM: s/c = g, /g2,

and ¢’ = cos#’, s’ =sin@’, where
2 <—%\/ +929E6HUH)
tan 20’ = < . (18)
1 (95 +93) vl — 9% (e3vF + eZv?)

The masses of the two gauge bosons, Z° and Z’ are given
by

Mz =3 (A+B- A~ BPETD?)
% (4+B+/(A=By+4D?),

where A= M2, /c?, B = e%g%vi+e%g5vy and D =
—(e/2sc)epgrv?. The electric charge e is given by the
same formula as in the SM: e = gyc = goc. In Appendix A
we record some formulae which will prove indispensable in
various manipulations.

The interactions of the matter fermions with Z° and Z’
bosons takes the form

_ 0
Liny = — T80 20— T4, 2],

where the currents are easily found to be

e _
To= Y |5 (17 -2Qp) ¢ +ergp 8| i Priy
f=v,e,u,d
e _
+ Z [; (—=s*Qf) ¢ —efegp S/} Yy PrYy
f=e,u,d
(20)
e _
=Y [_;(Tf—s?Qf) s'+egr c’} Yy Pryy
f=v,e,u,d
b [P (@) o~ epegn ¢ G Py
f=eu,d

(21)

where P, = 3(1—17°), = 1(1+9°). The factors in
square brackets in (20) and ( 1) define the couplings cfZIiR

!/
and cfZL R-

P.H. Chankowski et al.: Z’ and the Appelquist—Carrazzone decoupling

Gauge invariance of the Yukawa couplings of the matter
fields

Lyuk = —yeH lie® —yre;; Higyu® —yqaH q;d°

imposes the conditions (see (3))

YE+Y -Yg=0,
Yie+Y/) ' +YF=0,
Yd(%:_’_y‘qa_ylt_}:ov

where a = E, Y. When combined with (12) they imply

eccte—eg=0,
eyct+eq+en =0, (22)

ege+eq—eg =0.

3 p parameters in the
SU((2) xU(1)y xU(1)g model
and the Appelquist—Carrazzone decoupling

In this section we define various measurable p parameters
in the SU(2)r, x U(1)y x U(1)g model and show that at
the tree level the effects of the heavy Z’ decouple. We then
identify the dimension six operators which, when added to
the SM Lagrangian, reproduce at the tree level the lead-
ing (in inverse powers of v%) corrections to the low energy
observables due to Z'.

3.1 p parameters

In the SM the measurable parameter p can be defined in
several different ways. The simplest is the definition of p
(call it pow) as the ratio of the coefficients of the neutral
and charged current terms in the effective low energy four-
fermion Lagrangian. Another one is

M,

— 23
M2,(1—sin” ) (23)

p:

with sin? @ related to measurable quantities in various
ways, e.g. as the parameter in the on-shell Z° couplings to
fermions as in (24), or by the low energy neutral current
Lagrangian for e.g. neutrino processes (i.e. as a parame-
ter measuring the admixture of the vector-like electromag-
netic current in the leptonic weak neutral current in the
low energy four-fermion Lagrangian mentioned above). Fi-
nally, p (call it pz ) can be defined through the coupling of
the on-shell Z° to fermion—antifermion pairs expressed in
terms of the Fermi constant measured in the muon decay:

0¢F on 1/2 _
Efﬁff on shell _ (\@GFMzOpi) ﬂ’fV“

(7

—2Qf sin? 9 ) zZJfZO

(24)
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Independently of the definition used, p = 1 at the tree level
due to the custodial SU(2)y symmetry of the SM Higgs
potential. Thus, in the SM p =1 is the so-called natural
relation, i.e. the prediction which does not depend on the
values of the parameters of the model. Of course, quantum
corrections to p are numerically different for different defi-
nitions and do depend on the values of the SM parameters.
The usefulness of p stems from the fact that the domin-
ant contributions (dependent on the top quark and Higgs
boson masses) to it are universal, that is, the same for all
definitions of p.

Although the different p are observables (they are all
defined in terms of measurable quantities) none of them
can be used as an input observable in the procedure of
renormalization of the SM, just because p = 1 is the natural
relation.

In the SU(2)r, x U(1)y x U(1)g model custodial sym-
metry is broken at the tree level by the Z°-Z’ mixing. It
is then necessary to discuss the analogous p parameters in
some detail. The parameters p and pzs can be defined as
in the SM, i.e. by (23) and (24), respectively. The param-
eter piow 1S special, because it refers to the specific form of
the low energy effective Lagrangian which needs not be the
same as in the SM. In models in which the charged weak
currents are unmodified with respect to the SM the effect-
ive Lagrangian for low energy weak interactions takes the
general form

Leg = —2\/§GFJJ¢J_H + %
<S030 |aft (B9 Puss) (50" Pus)
i fa

+af1f2 (iflﬂYMPwal) (sz27uPwa2)
+af? (P, " PLYy,) (D7 Priby, )

+af1f2 (JJhVHPRl/’fl) (J,fQ'y“PLT/sz) ) (25)

where J4 are the standard charged currents. In the SM the
second part of (25) can be rewritten in the form of the
product of two neutral currents

LN = —2V/2GrJ* T, (26)

where

JH = Z N/ sz,y“ (Tf3PL — sin? O;HQf) vr. (27)
!

Moreover if the fermion mass effects are neglected pr and
sin? 6 are universal, pr = p, and sin 2geff — sin? 9°ff. p can
then be factorized out of the neutral current J#, and p = 1.

The necessary condition to define the low energy pa-
rameter ps (possibly dependent on the fermion type) in
the SU(2)L x U(1)y x U(1) g model is that the second part
of (25) can be written in the current x current form (26).
One would then have

fifz f1f2 fifz fifz
_apn” TaRR” —apR” — ARy
V pflpr = 3 3 (28)
\/_GFQTf12Tf2
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Computing the diagrams with exchanges of Z° and Z’ be-

tween the two currents J/,, see (20), and two currents J},,

see (21), respectively, and exploiting the relations (A.2)
and (A.3), it is easy to find

ol + ol — ol — ol -

3
_Lopsors _ (X (27, erromtepom+esgon
2 f197f2
H

QTf?’l eH9gE+er, gE+€flcgE> )
(29)

2.2 .2
€s9EVs

Due to the relations (22) the second term vanishes and,
since at the tree level 1/v% = v/2GF, we find (to some sur-
prise) that in the SU(2)L, x U(1)y x U(1)g model at the
tree level

f1f2

aft f1f2

+al] f1fa

—afi? —af/* = —2T} 2T V2Gr (30)

as in the SM. However, writing the second part of (25) in
the familiar current X current form is not always possible.
It is only possible, if the following consistency condition
holds:

(offe o) (ot - o) = ~+v2Gwaf
(31)

(it follows from the fact that the form (26) depends only on

three unknown:  /pf, pf, » sin? 9;'13 and sin’ Gj?g, whereas the
general form of the second term in (25) has four indepen-
dent coefficients). It is straightforward to check that the
condition (31) is not satisfied in general. It is satisfied only
by that part of (25) which describes neutrino reactions. In

this case a{lRl = aﬂlgi = aRR =0 and the condition (31)
is trivially satisfied. Thus, for neutrino processes one can
define the analog of the SM p parameter as plow = \/PvPf
and from (29) it follows that at the tree level pjow = 1 as in
the SM.

In the general case in the SU(2)L, xU(l)y xU(1)g
model even the generalized low energy parameters py can-
not be defined because the second part of the effective
Lagrangian (25) cannot be written in the current x current
form.

It is interesting to contrast pjow discussed above, for
which pjow = 1 at the tree level is a natural relation, with
e.g. p= My /M (1- sin” @), with sin® # identified with
sin? 0% in (24). We find

!
1——6@ —ES—/
s1n20§H:32 —e,

1—2306H o
/
c s
~s?+s? <2SC€H——€@c —
s c

)%=
e
1 erv?
=S5 —|—<s eqg — egc>%+
2 egvg
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where we have used (A.1).? Using (19) we then get

2g2 2
€s9EVs
2
[ (e
—1—1—0( )
vg

The important difference between piow and p in the
SU(2)L xU(1)y x U(1)g model is that the latter does de-
pend on some combination of the Lagrangian parameters.*
From the above results it is clear that the Appelquist—
Carrazzone decoupling holds at the tree level in the
SU(2)L, xU(1l)y x U(1)g model. Tt is also easy to show
that it can be easily masked by choosing a low energy ob-
servable like sin? @ (and in addition My/) to fix e.g. the
coupling gg. To simplify the argument, let us assume that
egc = 0 (at the renormalization scale we are working). Then
eHvH/eSv?g in (33) can be directly expressed in terms of

sin 6% from (32) so that

GHU%{
202 T
€sVs

(33)

=2 0 -2 e 2
sin® 6 sin“ 0%x — s
pz<72€ff+...>[1+e7§
s c

and the decoupling is lost!

In the next subsection we show the dimension six op-
erators completing the SM Lagrangian, which reproduce
leading terms of the corrections to the electroweak observ-
ables found at the tree level.

+...0, (39

3.2 Decoupling at the tree level

At the tree level the subgroup U(1)g can be broken inde-
pendently of the breaking of SU(2)y, x U(l)y In this case
the gauge field E,, becomes Z’ with a mass M2, = e%g%v%.

For vg much higher than the Fermi scale, the electroweak
observables can be calculated in the SU(2), x U(1)y ef-
fective theory (which is just the SM) supplemented with
higher dimensional operators generated by decoupling of
heavy Z’'. This approach yields corrections to the elec-
troweak observables due to Z’ effects in the form of power
series in 1/vg. Below we display the dimension six oper-
ators which reproduce the corrections to different p and
sin? @ from the preceding subsection up to O(1/v).

3 Defining sin” 6 in terms of the structure of the current (27)
for neutrino processes we would get

2
1

sin20 =52+ (e +e)) ( sem — ~eee | .
27 ) 4o}

4 The fact that at the tree level Plow = 1 as in the SM makes
this observable useless for constraining the SU(2)1, x U(1)y X
U(1) g model as the effects of new physics will be always much
larger in observables which are modified already at the tree
level.
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Exchanges of Z' between fermion lines are taken into
account by adding to the SM Lagrangian the four-fermion
non-renormalizable operators of the type

1 _
AE&M::_eﬁﬁstgE[wmw Pryn, | [Yip " PLibiy)
1 9 [+ 4
 ei(—epe ¢ VPR }
659EU§ el( € )gE [%A’Y RweA

X [ Priiy]

The kinetic term of the electroweak Higgs doublet H
gives rise, through the first diagram of Fig. 1, to a non-
renormalizable term of the form

(35)

1 1
ALsy = —=(2 L
SM 2( eHgE) e%g%vg

1 2
X [HT (g2wa T“+§gyB) H] . (36)

Finally, the second diagram shown in Fig. 1 gives rise to the
interaction:

ALsy = Z2efeHgE
7 295V
1 _
X [HT <92W§T“+§gy3u> H] [fo*f] .
(37)
After the electroweak symmetry breaking, the opera-
tor (36) gives the correction to the Z° mass squared

AMZ, = —(M2o)sm(efv7 /e5vE), whereas the opera-
tor (37) modifies the Z° couplings to the SM fermions:

Vs
— Zengs Z

they just correspond to terms efgrs’ expanded to order
1/v% in the Z° couplings; see (20).

At the tree level the three operators (35)—(37) re-
produce to order 1/MZ, ~ 1/v% all corrections to the
low energy (compared to vg) observables due to the ex-
tended gauge structure of the model. This is equivalent to
the statement that the Appelquist—Carrazone decoupling
works for Z’ (at least) at the tree level.

We can illustrate this approach by calculating the cor-
rections due to the higher dimensional operators (35)—(37)

ALgy = — Z 220 efe?gH ,Ug ZO [fg-/"f]
f

U“f]

X J
DVSN&ARﬂAAAAAA}Jv»VVB
B /4/ 7! \‘\ B

Fig. 1. Generating four-fermion operators by the heavy Z’
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to the parameter pyoyw. To this end it is sufficient to find
Lv

the difference aty — a¥;, of the coefficients in the effective
Lagrangian (25). In the SM a4 —a¥} = (e?/4s°cAM2,) =
1/v%, and since at the tree level 1/v% = V2Gr, we have
Plow = 1. The corrections due to the extended gauge struc-
ture read

1
¢ _ 2 2
(AGLVL)Z, - _g%eg’ljgel 9
A Lv - . 2 38
( aRL) ! Q%G%U%« €l€ecdp ( )
from the operator (35),
2 2.2
¢ _ ¢ o 1 efvy
(AGLE)Z' T 482¢2 (1-2s ) Méo eZvd’
2 2.2
¢ _ € oy 1 efvy
(AaRVL)Z/ T 4522 (_23 ) Méo 202 (39)

from the correction to the Z° mass produced by the opera-
tor (36), and

(Aae”) _ e 1 eleHv%,
LL)z' — 9.2 Af2 2,2
2¢* M7, egvg
2 2
v _ € 2 €HVYy
(AaRL)Z/ = —WM—QO (28 € — eec) % 5 (40)
Z

from the correction to the Z° couplings produced by the
operator (37). Combining these three corrections we find,
using the relations (22), that A(a¥y, — a4 ) = 0. Other ob-
servables can be checked similarly. Corrections subleading
in 1/vg can also be reproduced upon inclusion in the SM
Lagrangian operators of dimension higher than six.

The equivalence of the two approaches (full calcula-
tion versus higher dimensional operators) checked above
shows that the Appelquist—Carrazzone decoupling holds at
the tree level. The expectation that it should hold in the
SU2)L, xU(l)y x U(1)g model to all orders is based on
the observation that U(1)g can be broken independently
of the breaking of SU(2);, x U(1)y. We will propose the
scheme which makes it explicit at one loop and thus show
that in particular it is not spoiled by the mixing of the
gauge fields corresponding to the two U(1) groups.

4 Renormalization scheme

Before we define our renormalization scheme for the
SU(2)r, xU(1)y x U(1)g extension of the SM, it is instruc-
tive to recall the simplest possible approach to calculating
loop corrections to the electroweak observables within the
SM [15,16].

Basic (running) parameters of the SM are® §,, g» and
Op (or any three other functions of these parameters, e.g.

5 We denote running parameters which are traded for observ-
ables by a hat.
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&, My and 5?). In the renormalization procedure they are
expressed in terms of the values of the three experimentally
measured observables. Traditionally one chooses for this
purpose Gr, agy and Mz. These quantities are computed
in perturbation calculus using for example the dimensional
regularization and the MS subtraction:

9,93 &
QEM = —F 53—+ +0apM = — + damm = &+ dagm
4m (gg—l—gQ) 4m
o _ Lo oy o 1€ 5 2 _ 2 2
MZ:Z(9y+g2)v :Zgzézv +0Mz =Mz +Mz,
(41)
1 62 .
Gr = —— +6Gr = +0Gr =Gy +0Gr .

V202

As the corrections dag, (5M% and dGr are calculated in
terms of the parameters &, ]\;I% and §2 the above relations
have to be inverted recursively. At the one-loop order this
is particularly simple:

€
V245262 M2

& = agMm —daEM ,
M2 =M% —6M2,
Gr = Gr —0Gr,

(42)

where in §agm, IM% and §GF one replaces the parameters
a, M% and §2 by agm, Mz and Gr using the tree-level re-
lations. For any other measurable quantity A we then have

A= A(O) (CAE,M%,GF> +dA (d,M%,éF) +...,
(43)

where 0.4 is the one-loop contribution to the quantity .A.
This is next written as

A= A(O) (aEMv M%, GF) +46A4 (aEM7 M%v GF)
- 9A0 dA® . 9AO

30&]31\/[ - 3M% z- 8GF 5GF

OEM (44)

The expression (44) is finite and independent of the renor-
malization scale .

The free running parameters of the SU(2), x U(1)y x
U(1)g extension of the SM are go, vy and vg and the cou-
plings grg, gy, gvy and gyg (in fact only three of them).
One way of organizing higher loop calculations in such
amodel is to follow the recipe sketched above and to choose
the appropriate number of input observables, in terms of
which one would express all the running parameters.

Clearly, for Mz > Mo the parameters of the model
form two sets: g2, gy and vy describe the SM electroweak
sector, and vg and the remaining gauge couplings describe
the Z’ sector. However, since the Z’ boson has not yet
been discovered and its mass is unknown (assuming it ex-
ists), the best way to organize loop calculations is such that
the Appelquist—Carrazzone decoupling (in the case Z' is
heavy) would be manifest. This condition is not satisfied
by schemes in which additional parameters related to the
heavy particle sector are expressed in terms of low energy
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observables. Decoupling would be manifest if all additional
parameters were related to the measurable characteristics
of the heavy particles. Independently of the question of
decoupling, renormalization schemes using a number of ob-
servables equal to the number of free parameters may be
difficult to implement in practice as one has to solve for the
running parameters a larger set of equations than (41) in
the SM, and the resulting analytical formulae may be very
complicated and unmanageable.

In the fits to the electroweak data, breakdown of
explicit Appelquist—Carrazzone decoupling in a scheme
chosen to compute the observables may even incorrectly
produce upper bounds on the additional heavy particles
(gauge bosons, Higgs scalars).

In this paper we propose to organize loop calculations
into a hybrid scheme in which the parameters gz, g, and
Oy are expressed in terms of agy, Gy and Mo (or Myy)

as in the SM and the remaining parameters are kept in the
calculations as the MS scheme running parameters. The
renormalization scale p for them can be chosen arbitrarily.

As we will show by explicit calculations in the SU(2)y, x
U(1)y xU(1)g model, the advantage of such a hybrid
scheme® is twofold: the Appelquist-Carrazzone decoupling
of heavy particle effects is made manifest — for heavy par-
ticle masses taken to infinity the expressions for the ob-
servables measured at energies of the order of the elec-
troweak scale (or lower) coincide with the SM expression
due to the presence of explicit suppression by a large mass
scale (in the SU(2)L, x U(1)y x U(1)g model by factors of

1/v%). Moreover, an explicit renormalization scale depen-
dence remains only in the terms suppressed by the large
mass scale(s). The expressions for observables are in fact
scale independent when the RG running of the parameters
is taken into account. Tadpoles play a crucial role here [17].
Last but not least, our scheme does not require solving
for running parameters a complicated set of equations; in
this respect it is as practical in use as the usual schemes in
the SM.

Extensions of the SM are constrained by precision elec-
troweak observables. In our scheme observables are calcu-
lated in terms of agym, Gv and Mz or My, (because in the

SU(2)L, xU(1)y x U(1) g model the tree-level formula (19)
for the Z° mass is complicated it is much more convenient
to take as the three input observables agy, Gr and M%V

and compute instead M;O in terms of these) and the ad-
ditional parameters of the model at a conveniently chosen
renormalization scale u. Fits to the data can then give con-
straints on these running parameters. Moreover, in theories
in which the Appelquist—Carrazzone decoupling holds, be-
cause the loop corrections reduce to their SM form as the
heavy mass scale is sent to infinity, a fairly accurate esti-
mate of the limits imposed by the precision data on the

6 In fact, such a hybrid scheme is adopted for the usual treat-
ment of the strong interaction corrections to the electroweak
observables: é&s(u) is not traded for any observable quantity; in-
stead one relies on the fact that the explicit ;1 dependence of the
two-loop contributions should cancel against the p dependence
of &s() in one-loop terms.
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additional parameters of the model is possible by combin-
ing the SM loop corrections with the tree-level corrections
due to “new physics”.

The one-loop expressions for the chosen basic input ob-
servables read (see Appendix B for details):

A QEM
o= ~ 2
1+11,(0) — (& ﬂ)lnTgV
2 OEM MI%V
~ 1-11,(0)+ —1In —~
QEM +(0) + - 2 )
IIyw (M)
M, = M3, (1— Ve N (45)
w
0 = - (1+A4¢),
V2GF
with Ag given in (B.4) and
2 TOEM _ 2 2
ERCST A AN
02— \/§GFM€V—7TO¢EM(1+A) EC%O) —S%O)A
V2Gr M3, ’
(46)
where
2 & MQ _IAYVVV[/(JW'2 )
A=—11,0)+—1In — W, L Ac (47)
v T 2 M,

(as usual IT,(q?) is defined by IT,,(¢%) = ¢*I1,(¢), i.e. it
is the residue of the photon propagator).

Using this scheme we will explicitly demonstrate that
in the SU(2)r, x U(1)y x U(1)g extension of the SM the
Appelquist—Carrazzone decoupling does hold. To this end
we will compute in our scheme the two different p pa-
rameters defined as in Sect. 3 in terms of the following
observables: piow, defined by the effective Lagrangian for
vue” elastic scattering, and p= M3, /M%(1 —sin? 6%),
where sin? 0'; parametrizes the effective coupling of an
on-shell Z° to an [T]~ pair. In particular we will demon-
strate that the celebrated m? /M2, term is present in both
cases.

5 Decoupling of Z’ effects in pjq, at one loop

As an exercise, in order to demonstrate the working of
our renormalization scheme, we will compute one-loop cor-
rections to the low energy parameter pjo, defined by the
v,e” — vye” elastic scattering. Since piow = 1 at the tree
level is a natural relation in the SU(2) x U(1)y xU(1)g
model, the one-loop corrections to piow should be finite
when 1/v% in (29) is expressed in terms of Gy with one-
loop accuracy.

At one loop the direct generation number dependent
fermion contribution comes through the “oblique” correc-
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3 ev ev .
tions to ary, — aRL:

Z0 z0

La l Hzozo(o)

M3, M7,

7z 1 1I77/(0)

M2,

ZO 1 I704/(0)
© MZ, M
7z 1 Hzoz(0)
CME,ME

(611, = ARL)1-100p =

+ cuL a (48)

where Z; denotes Z% or 7, af = cfZL ch, and the cou-

plings ch R (ch r) of Z9 (Z') to left- and right-chiral lep-
tons are defined by (20) and (21). The self-energies 11z, 7
contain in principle also tadpole contributions. Another
generation-number dependent contribution to p arises
from ITyw (0)/ M2, after expressing 1/9% in the tree-level
term (29) with one-loop accuracy

1
aeRVL)tree = 52 = \/iGF(l - AG) ’ (49)

H

(ar1, —

with Ag given by (B.4).

Fermionic contribution to pow

The top-bottom quark contribution to the one-particle ir-
reducible part of ITy w is the same as in the SM:

52

. ~ 1
Ty (0) = S, [2A<o,mt,mb> 2 mE )

X bo(O,mt,mb)] , (50)

where N, = 3. The one-particle irreducible part of II 7,7 (0)
can be simplified to

ﬁZiZ]’ (0)= —2atZiathNcmfb0(0, My, M)
— 2abZiaij Ncm%bo(O, My, Myp) .

Contributions of the other fermions can be written analo-
gously. When inserted into (48) the fermion f contribution

to 1, z;(0) factorizes as
) af of" af'af
aRL)l loop — M2 + MZ/

Z0 2 a?
« CL af n CoLay
Mz, Mg

X Qm?NC bo(o,mf,mf) y

(ot —

and computing the factors in brackets using (20) and
(21) and the formulae (A.2) and (A.3) one finds (omitting
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1/167?)
2 m?
v t,b
(aiL a’RL)l loop — 4 m?NC In _gt
Vg 1%
" 1_ﬁ(el—l-eec—eH)(eq—l—euc—I—eH)
I v?g €3
" 1+’UH (el—l—eH)(eqz—l—euc—I—eH)}
| % €s
2 m?2
+ ngNC hl —2b
VH H
_ ) B o
% 1+U_§1(€l+6e eH)g€q+ed eH)]
L Vs €s
[ v% (e +em)(eq+eqe —en)
x |1— oy 22 )
L S s

The first terms in square brackets reproduce the SM con-
tribution. The other terms are simply zero due to the
relations (22). Combining this with the top-bottom con-
tribution to Ilww (0) in (49) one finds that the fermionic
“oblique” contribution to pioy is finite and exactly repro-
duces the one-loop SM result

Aplow =T 5 \/_GFg(mt, mb) +. \/_GFmt

162 162

(51)

(the function g(my, ms) is defined in Appendix E). Thus,
we explicitly demonstrate that in the SU(2), x U(1)y x
U(1) g model the celebrated oc m? contribution is present
in the p parameter defined in terms of low energy neutrino
processes.

Bosonic contribution pjow

The circumstance simplifying calculation of the vertex and
self-energy corrections to external lines to the v,e” —
v,e” amplitude is that (due to the corresponding U(1)
Ward identities) the corrections to the vertices due to the
virtual Z% and Z’ are exactly canceled by the virtual Z°
and Z' contributions to the self-energies. For the correc-
tions due to the virtual W one finds

t
16’/T (aLL )‘{elroop

A M2
X <é3%3/>] (ndiv+ln—‘2’v> ,
B p

(52)
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2 ev \vert _
167 (aRL)l_IOOp—

Z0 1 é3 £Cl
CeRp2 M2, 33

't ¢
Z _is3C
+C€RM%, ( i€ §33 >]

M2
X <77div + In —‘2}[/> ) (53)
u
and, after using the relations (A.2) and (A.3),
ev ey \Vver 4 5 62
167° (aff, — aRL)lelt)op 2, 627
1 9% 2e% — ec M2
14 =24 el eH eHe ] (ﬂdw"‘ln—) .
2 0%
(54)
Using (A.2), (A.3) and the results for IALYZO (0) and ]AY,YZ/ (0)

which can be extracted from AppendixB.1, one can also
check that the “oblique” corrections to the v,e — v,e scat-
tering amplitude potentially singular at zero momentum
transfer cancel against the singular contribution of the
photon exchange between the tree level eey and one-loop
vv7y vertices as in the SM [16].

The bosonic contribution to (48) can be calculated
using the formulae collected in Appendix D. The structure
of the WtW—, GEWTF, GtG~, G°A° and G'S° contri-
bution to Iz, 7 is such that they can be written in the
form

1), (%) = ool MM (g, (55)
which, when used in the erv — er amplitude, leads to the
factorization observed already for the fermionic contribu-

tion:

(k) " (k
at CVLaZO _|_CfLa(Z’)
ary, =

M%O M2

20 (k) (k)
ct a "
x ( L2 +CeLaZ >H<’“’(q2), (56)

2 2
M2, ML

and similarly for ag,. This allows one to easily calculate
the divergent part of the corresponding contributions to
afy —a@; (of these only WHW ™~ and GTWT are diver-
gent). Using the tricks (A.2), (A.3) and (22) it is

1 A4 2

— 262 [1+”—§176H(6H;6l)]

vy 8 vg €%
A2 2

-5 (2§2—2é2”—§w> Naiv.  (57)
Vg Vs €s

The divergences of the Z°h® and Z’'h° loop contributions
to Iz, z; can be combined to yield

~

A2

0
[HZiZJ} g 229z ( 5202 +46H9E> THndiv ,
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: _ € / __ €& ’
with azo = =C +2engEs and ayz = =C +2enges’.
: . I v v
r‘l;lhe corresponding divergent contributions to af}, — agy, is
then

1 [ é
- 2 §2A2+46HQE Ndiv - (58)

VH

The other “oblique” bosonic contributions are finite. It is

also easy to check that the tadpole contributions to the vec-

tor boson self-energies cancel in the difference af}, — ag7.-
Finally we record for completeness the ﬁnite contribu-

tions of the box diagrams to the coefficients a{{, and afg of

the low energy Lagrangian (25). We find

ve 1 0 0 1 ’ " 2
trais = 33 (o) () + 33 (o) ()
Z z!
1 ]\42 0 1 50 ot
+ M%, _ MQO In <M2 ) 6 CEL CfLCeZL CeZL
~4
e
+ =, (59)
§4M3E,

v 1 0\ 2 0\ 2 1 N 2 7\ 2
1ot =~ 5723 (1) () — 37,3 (1) (&)
70 z

1 Mz, /0
— In 6¢cZ cZ I cZ
2 2 2 vL*“vL%eR %eR -
M7, —M 70 <M )

From these formulae the box contribution to pjow can be
easily obtained.

Combining the results (54), (57) and (58) with the di-
vergent part of Ag in (49) given by (B.5) and (D.2), one
easily finds that the total one-loop contribution to the pjow
parameter defined in terms of the ve — ve scattering am-
plitude is finite and, since the coefficient of In(1/?) is the
same as that of 7q;y, is independent of the renormalization
scale. Moreover, it is easy to see that in the limit vg — oo
one recovers the SM result, i.e. the Appelquist—Carrazzone
decoupling is manifest.

If sin® G‘EH is used as an additional observable, the ex-
plicit decoupling is lost. This is because one has then to
express gg and vg in the one-loop contribution through
M and sin® 657 (to zeroth-order accuracy) with the effect
already descrlbed the explicit suppressmn factor o< 1/ vS
is then replaced by the difference of sin Geﬁ — 3%0) which is
finite and does not vanish as vg — 0.

6 One-loop calculation of M2,

In this section we compute M%O in our scheme. Unlike
the previous example of pioy, the tree-level formula for
M7, does depend on the parameters of the extended gauge
sector. Therefore, in the one-loop result for M;O in our
scheme, the explicit dependence on the renormalization
scale p will remain. We will however show that the condi-
tions for the heavy Z’ effects to decouple are satisfied: the
part of the result which does not vanish as vg — oo is inde-
pendent of u and takes the SM form. Furthermore, we will
show that the whole result for Méo is independent of the
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renormalization scale if the dependence on p of the param-
eters in the zeroth-order expression is taken into account.
This constitutes a non-trivial check of the renormaliza-
tion group equations (13)—(15) and of our renormalization
scheme.

We calculate now the one-loop corrections to the Z° bo-
son mass. It is given by the formula”

MZo = Mo+ 500 (M3o)

where the tree-level term Méo is given by (19). The run-
ning parameters é, §, ¢ and vy in M ;O have to be expressed

in terms of the input observables G, M‘%V and agy with
one-loop accuracy by using the relations (45) and (46).

This gives
M2 Myww (M2,) S
Ag+6A="W {1—%‘”)+$A} ,
o) (0)

Bo+0B = gheivd + 20 gE i

V2GR

Do+dD = _leHgEe(io)
2 3(0 c(0)V2GF

sty . 1Iww(MZ) | 1
L o HHww M) (1, L
{ 263, 2 MR 2

where ey = v/4magm and A and Ag are given by (47)
and (B.4), respectively. In agreement with the prescrip—

tion (44) we then have 2M 2, = 2(M2;) o) +20M 2o, where
(M24) 0) is given by (19) with A, B and D replaced by Ao,
By and Dy, respectively, and

(1+A4¢q), (60)

2(5M§0 —6A+6B— (Ag — Bo)(0A—6B) +4DodD
\/(AO —By)?+ 4D(2)
+2 ﬁZOZO(M%)
M ﬁWW(M2 ) 0)
— CQW l— e w/ Q) ( A| + 21T 50 50 (M2)
© w o)
262 M
ghelod + L -
_|_
! 2
ME | HOww(ME) S gEeH
8 2 N 2 2—A A
“© My o) V2Gy
I o )

V2GE o 2GF3(0) )

1 s(() 1 HWW(MW)
X {2 C(O A B 2AG 5 (61)

M,
where the self-energies ITyyw and IT 7070 include the tad-
pole contributions. We would like now to demonstrate that
i) in the limit vg — oo the SM result is recovered, and )
that the above result is independent of the renormalization
scale p.

7 Mixing of Z° with Z' is formally a two-loop effect.
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6.1 SM limit and decoupling of the heavy Z’ effects

For vg — oo the tree-level term (Méo)(o) obviously gives
the SM result M3, /c?, C(o)- Moreover, the prefactor in the
third line of (61) is then 1+O(1/vd) and the prefactor of
the last term is also suppressed by 1/v%. Thus in the limit
one recovers superficially the SM formula. We have

M2, | Ihww(MZ) s
2 W ww My (0)
26MZo — 255 | - A
(0) w (0)
+2HZ0Z0(M%) . (62)

However, one still has to check that the appropriate combi-
nations of Iy, Il ;0 ;o and A do not contain terms which
would grow too fast as vg — 00, invalidating the argument.

In order to show that they do not, we first note that
the S° tadpole Tgo which contributes only to IT 70 40 is sup-
pressed (as we show below, the h° tadpoles cancel exactly
in the full formula (61), similarly as in the SM). Indeed,
the S° coupling to Z°Z° is proportional to s2vg ~ l/vg’v;
the S° propagator is ~ 1/v%; the S° coupling to Z'Z’ and
5059 pairs is proportional to vg, so that these particles
circulating in the tadpole loop give to Tgo contributions
~ vg’v. Hence, the S° tadpole contribution to II 7070 gOES as
~ (L/u2)(L/03) (%) ~ 1/v3.

Furthermore, A approaches in this limit its SM form
due to cancellation of the leading terms for vs — oo be-
tween A and X,1, + Y., and between Iy w (M3,) and
ﬁWW(O). Moreover, Ag + ﬁWW(MEV)/MEV grows only as
In(v%), so the contribution of the last bracket in (61) van-
ishes for vg — co. Thus, in this limit one indeed gets (62)
and it remains to check that the difference of the Z° and
W* self-energies approaches the SM form.

For the fermionic contribution to (62) this is clear: for
HWW(MW) it is exactly as in the SM, and that to 740 40
(M3 2 ) is different, but the difference is only due to Z° cou-
plings which, as it follows from (20) and (A.1), approach as
vg — oo their SM form. In particular, this means that in
the SU(2 )L X U( )y x U(1) g model the celebrated contri-
bution o« m? /M3, is present in the M2, < M2O relation.

Bosonic contributions to ITyw (M2,) and IT 40 40 (MZ,)
individually contain terms which grow as vg — oo (the last
term in the third line of (D.1) and the Z’h° contribution to
IT 70 70), but it is easy to check that they cancel out in (62),
and the difference Iy w (Mg, )/ Mg, — I 7o z0(M2o) /M2,
approaches its SM form too.

Thus, we have demonstrated that in the limit vg — oo
the finite SM expression for Mo is recovered.

6.2 Renormalization scale i independence
of Mo at one loop

h° tadpoles cancelation

As a first step we show that the h° tadpoles 0 drop out
of the formula (61). The contribution of 7,0 to 21100
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With one-loop accuracy and using the formulae (A.1) this
can be rewritten as

M, (M} ghel \ Ao—Bo _ ghek

lc?m B (C%m B ﬂGF) Ve VaGe

gl (21)
0) (0 2G2 Va O M?

It is then clear that each term finds in (61) its counterpart

with —ITh tad /N2, = (2/0m)(Tho /M) and exactly the
same coefficient.

Contribution proportional to fermion masses squared

Next we consider contributions to M;O proportional
to the fermion masses squared. These are hidden in
HZOZO HWW(MW) and in HWW( ). As usual, they can
be isolated by approximating the first two self—energies
by IIz040(0) and IIww(0), respectively. From the for-
mula (D.3) we get

70 2
H?églo = _2ZN (CfL _CfR) m]% bo(O,mf,mf) .
(65)

Using the couplings (20) and the relations (22) and (A.1)
we can write

720 z0N\%2 1 é2 é2 9 9
(A~ ) _5{@+ e 9en
(BoA g w} |
3 A
(66)
This makes it clear that to each term in 2 [U?é?o}

there is a corresponding term with IIww in the for-
mula (61), so that the divergences proportional to the
fermion masses squared properly cancel. Hence, the terms
quadratic in the fermion masses arising from “oblique” cor-
rections are finite (and, hence, p-independent) just as they
are in the SM. For the one-loop top—bottom contribution
using (50) we get

1

= — <A0+B0 — \/(A() —Bo)2 +4D(2)>

M2, 5

16 2g(mtamb)

+ other contributions,
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and in the limit vg — oo one recovers the SM relation (com-
puted using as input observables My, Gr and agy ).

Remaining fermion contribution and the use
of RG equations

The remaining divergent fermionic contribution (D.3) to
IT 40 50 is proportional to ¢*:

ar 4:
2 [I555 (¢")] " = 50° SO N
f

: {<cfa>2+ ()]

Using the couplings (20) and the relations (22) and (A.1)
the right hand side takes the form

(-4)
3 v

é2
><4A2A2 [2 45% +85*

40
2 4/\2 A4
oo (2 )|
é? g2en? 2 4 2
é_zw X [261 —2€ec + N, (—geq—i— §e“c — gedcﬂ

A-B
+<1 + ?> 95 (267 + e + Ne (2 + ee +€Ge) } div-
(68)

With one-loop accuracy the prefactor of the first line can
be transformed into

A-B\ M}
M2, (1— ): W+
AR C(O)

 leqign

2V 50

after which different terms arising from the first line of (68)
combine with the appropriate fermionic contributions to

M2, [
)
(0)

in (61) canceling their divergences and the p dependence
exactly as in the SM.
In our renormalization scheme (outlined in Sect. 4) the

two other divergent terms in (68) are cut off by the MS
procedure. In order to see that M%O computed at one loop
is nevertheless independent of the renormalization scale p,

we have to consider the dependence on 1 of 2(M§O)(0):

Bo— Ao M2,

o 1

26T

2
0)

2 2
Mww (M) ™™ | 5o) 5

MZ, C?O)

)

div

(2M20)(0) = Ao+ Bo() — /[0 — Bo(u)]* +4D3 (1) .
(69)

The superscripts 0 on A, B and D mean that the parame-

ters é2, §2, ¢2 and Dy have been expressed in terms of the
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basic observables agy, My and G to zeroth-order accu-
racy. The p dependence is due to the parameters eggg,
esgr and vg, which are still the running parameters of the
full theory. Using the renormalization group equations (15)
and (C.5) for an infinitesimal change of scale 1 we have

Bo(u) = BO(M/) +0B1+30B>+6B,,

4D} (u) = AD3(p') +46D3 +46D3 ,

where

1
0B = —2
! V2GF

2 1
x| 3 > engnergrYy Vi + 326%9%1@51@5
f

2

17
Xg;lnﬁ,

1
6By = | ———e%g% + €2 21)2)
2 (\/§GF HIE S9EVs

2 22 155 5 149 I
X gzeng+§2€H9E+§€SQE lnﬁ,
f
3
5B, = g (—5)\511?9 T 3ekghd

—12

44,92 4,292 2 2
JEesvs +9EeseHUH> H

)\S lnﬁ,

o 1

46D3 = —
50 o) 2%

2
213 zf: engpergpYe Yy

1 w2
+§2€%19%YI¥YI¥> gy In ek

o 1

46D2 = —
S%O)C%O) 2G12;

2 2
€a9E

2 29 19 9 1454 M2
X —E €j9r +32ey9r + z€s9r | In—5 .
3 F 3 3 I

(70)
The formula (69) then takes the form

(2M20) 0) ~ Ao+ Bo(i') — y/ [4o — Bo()|* +4D3 (w)
Ay~ B
+(6B1 + 6By +0B,) <1+ M)

1
N (46D} +46D3) .

(71)
It is then a matter of some simple algebra to check that
the fermion generation number dependent terms in (70)
precisely match the In(1/u?) proportional terms associ-
ated with the two last lines of (68) changing in these
terms u into u’. Hence, up to one-loop accuracy the en-
tire fermionic contribution to M%O is renormalization scale
independent.
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6.2.1 Renormalizations scale independence of the bosonic
contribution to M2,

The scale independence of the remaining one-loop contri-
bution can be checked in a similar way (using judiciously
the relations collected in Appendix A): part of the diver-
gences with the associated u dependence explicitly cancels
in (61) as a result of expressing €2, §2, ¢? and 9y in terms
of the basic observables agy, My and Gy with one-loop
accuracy. Other divergences are cut off by the MS prescrip-
tion and the explicit renormalization scale dependence is
compensated for by the change with p dictated by the RG
of the parameters eygr and vg in the zeroth-order term
(MZ24)(0) (69). Here we only would like to show that the S°
tadpole contribution to 21T 7070 plays a crucial role in the
working of the scheme [17].

The couplings of S° to S°S° and to G'G’, G°G? can
easily be computed.® For the S° tadpole we then get

3 1
7?90 = Z)\Svsa(Mso) + Z)\S’USEIQCL(MG/)

1 ~
+ ZAsvsslza(MGo) +3g%e%vs

Mz 1 M2, 1
X lCIQM%/ (ln ,ug — g) +312M§0 <h’l'u—§ — g

where ¢ and 5 are the mixing angles of G and G’. & and
5" are different from ¢’ and s’, but still one has the usual
relations Méo = fM%O and M2, = {M32,. The S° mass is
M2 —
50 =
£
The S° tadpole gives

%)\sfug. As usually we work in the Feynman gauge,

. 0 Ts0
20150 138 = 2. 2% %vg 57 (— ]\;2 )
SO0
A—-B 1
2 2
= —4gpeivs (1 + — ) —)\SU%

3 1 1
X {ZASUSE)\SU% + Z)\Svsg%e?gv?g

1
+3g%e%~vs (g%e%vg +g%e§{v§{) } In E +...,

where we have used the relations 3’2M§O+c’2M%/ =
2,22 2.2 2 F2NL2 L A2NS2 — o2 2,02
9resVs +9peyvy and 8§ M7, +* M7, = esgpvg.

From (2M2,)"™°, see (69), we have instead

(2M25)tree (1 + M) B, .

8 As explained in AppendixC, in order to simplify the for-
mulae we assume that at the scale we are working the scalar
potential is the sum V = Vg (H)+ Vg(S). The physical Higgs
scalars S° and h° are then pure real parts of the singlet S and
of the neutral component of the doublet H. The 5% does not
couple then to RORO.
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This explicitly shows that in the S° tadpole contribution
the scale p is properly replaced by ' in the terms oc Ag and
o (1/As) (as we have checked, the A\s independent terms in
Tso combine with the bosonic contribution 17,0 50).

We have shown that in the one-loop expression for
M ;O, consistent with the Appelquist—Carrazzone decou-
pling, the explicit renormalization scale dependence is only
in terms suppressed by inverse powers of vg. Moreover, the
whole expression is in fact renormalization scale indepen-
dent, if one takes into account the u dependence of the RG
running of the parameters in the tree-level term.

7 On-shell Z° couplings to fermions

In this section we briefly consider the parameter p defined
in terms of the physical Z° and W¥ masses and the Wein-
berg angle:

_ M,
B M2, (1-sin®6%)’

p (72)

where sin® 8’5 is defined by the form (24) of the effective
coupling of the on-shell Z° to the fermions (we take leptons
for definiteness):

0rF —
L2777 ool = g (P + FrPR)WIZY . (T3)
Comparison of (73) with (24) gives sin? 0l = Fr/2(Fr —
F1,). For the form factors F1, g we have the formulae

70 1, 2 70
FLr=—cLr~ 5700 (M30) civr

+éﬁzow (MZo) _ 04 (MEO)Cz' T
M2, M2, — M2, R
(74)

Since we are interested only in the dominant univer-
sal top—bottom contribution, we have not written down
the genuine vertex corrections, nor the final fermion self
energies.
. . . . 70 .
Expressing the running coupling constants in CiL,r I
terms of MZ,, Gy and agy with one-loop accuracy we find

2 5(0) 12 apm  Mj 1 /
= ——=<1—=1II.,(0)— 1 A
RO { 3O w2t 2¢y) o

s
_ egcgEszo) —1—6(0)% §c’ — €eocgE 58’ R
20 €(0) 12 AEM
=% )17 _ =M
ceL 28(0)0(0) { 2 ’Y(O) 27
M2 s2 -
x In ZV +© 3 @ A CEO)
I 20(0)
5(0) 1= AOEM
1—=-I1,(0)———
+€(0) c) { B ~(0) o
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ME, 1
X In —*- + A} c
2 2 (0)
W 20(0)

() (1 — 23%0)) dc 4 epgp s’

+egrsly — — 2 —
© 25(0)c(0)
(75)

where A is given in (47). We have also introduced d¢’ and
§s’ because the original ¢’ and s’ depend on ¢, 8, ¢ and 9%.
The quantities CEO) and 3/(0) are then given by the same ex-
pressions as ¢/ and s’ but with é, 8, ¢ and 9% replaced by
€(0)s 5(0)> ¢(0) and 1/\/§GF, respectively.

In our renormalization scheme the form factors Fi, g
given by (74) and (75) are finite if the MS scheme is em-
ployed. Moreover their parts non-vanishing as vg — oo are
renormalization scale independent (i.e. they are just finite)
and the explicit p dependence of the one-loop terms is
compensated for by the change of the running parameters
eHgE, ergE, ercgr and vg entering the zeroth-order contri-
butions.

For dc’ and ¢s’ we find

/

c 1 1
_ S0 s
O =gy o
(0) (0) W

x [4D§(6A—6B) — (Ag— By)4Dyé D]
c 2.3 .2
__"0 €0) ¢eHC59EVs

(V) 250)c0)  V2Gr

y l_Ml*”’

s (76)

where in the second line, in order to isolate the dominant
top—bottom contributions to the form factors Fy, and Fg,
we have isolated only the term with ITyw (0). Combining
this with

HZozl (MEO) ﬁﬂzoz/(o)
0 0 / /
== Z(CfZL - CfZR)(CfZL - CfZR)QNéf)m]%

f

X bO(Ovmf,mf)
1 é

—WT%GH%Q%@
X Z2Nc(f)m]%b0(0,mf,mf)

f

(77)

(where again we have used the results (20), (21) and (A.2))
and using the fact that M%O — M%, =—,/-- wefind

Ft’b 1 e
—— —<EHE
LR (225

Q

2 3.2 7 N
89BVSCIL RT3 g(me,mp) .
(78)

Since (,/7--)* = (Ao — Bo)? +4D§ ~ v§ as vs — oo, this
contribution is explicitly suppressed in this limit. It is easy
to see that the expressions for F1, and Fg, see (74) and (75),
do not involve any other contributions proportional to m?
and m? and, therefore, no contributions oc m? /Mg, enter



P.H. Chankowski et al.: Z’ and the Appelquist—Carrazzone decoupling

sin? 6% at one loop.” Since we have already shown that for
vg — 00 one recovers also the SM expression for M o0, and
we conclude that in the U(1)y x U(1)g model

M,

— _1+ Nc
B M2, (1 —sin® 0%4) B

1672
+0 (mi/vg)+...,

V2Grg(mye, mp)

P
(79)

where the dots stand for other SM contributions as well as
for other terms suppressed in the limit vg — oo (also those
arising from the tree-level contribution contributon to p,
see (33)). Similar result can be proven also for pz; defined
by the effective Lagrangian (24).

It should be stressed that unlike pjoy to which one-loop
corrections have been computed in Sect. 5, the parame-
ter p defined in (72) is not equal to unity at the tree level.
Therefore the one-loop result for p does depend on the
renormalization scheme and in particular on the chosen set
of input observables. This observation is helpful in under-
standing the apparent discrepancy of our results with the
claim of [5—7] that in models like the one considered here
the contribution to p proportonal to m?/MZ, is absent.
References [5-7] use sin® 6; as one of the input observ-
ables and then, as we have commented earlier, the explicit
Appelquist—Carrazzone decoupling is lost. However, our
point is that the renormalization scheme can be chosen in
such a way that new physics effects can be treated as cor-
rections to the well established SM resuls.

8 Conclusions

In this paper we have discussed some technical aspects re-
lated to the U(1)g extension of the standard electroweak
theory. We have elucidated the correct treatment of the
additional coupling constants and presented the one-
loop renormalization group equations in a form adapted
to practical calculations. Furthermore we have proposed
a renormalization scheme employing as in the SM only
three input observables (for technical convenience we have
chosen to work with My,, Gr and agy instead of the cus-
tomary set Mo, Gr and agy) which has the virtue of
making the decoupling of heavy Z’ effects manifest. To
demonstrate this we have computed the parameter p de-
fined either in terms of the low energy neutrino scattering
processes or in terms of physical M2, M;O and sin? Qéﬂ
as measured in Z°% — [T]~. In addition, in both cases we
have shown explicitly in a renormalization scheme in which
the Appelquist—Carrazzone decoupling is manifest that the
o Ggm? contribution to the p parameters is present and
up to terms vanishing as M — oo takes the form as in the
SM. Our calculation supports therefore similar an observa-
tion made in [9] a long time ago.

Our choice of My,, Gg and agy as input observables
instead of the commonly used set Mz, Gy and agy was

9 In the SM the form factors F, and Fr do not receive any
such contribution if the scheme based on My, Gg and ag) as
input observables is employed.
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dictated by the desire of demonstrating crucial aspects of
our renormalization scheme (in particular the role of the
renormalization group equations in proving scale indepen-
dence of the computed observables) analytically. We have
checked, however, that the explicit decoupling of heavy Z’
effects (that the expressions for the electroweak observ-
ables approach their SM form for vg o Mz — o0), do not
depend on whether one uses Myy or M.

The Appelquist—Carrazzone decoupling offers a possi-
bility of a systematic inclusion of all large logarithmic ~
[In(Mz/ /M 4o)]™ corrections by taking into account the RG
running of the Wilson coeffcients of non-renormalizable op-
erators generated by decoupling of the heavy Z' sector.
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Appendix A: Useful formulae

The mass matrix of Z° and Z’ which arises as a 2 x 2 sub-
matrix after rotating (16) by the angle fw reads

iloy+93) vl —5\/95+d3gmenvy _(AD)

DB
—31\/95 +93gmenvy ehgpvh +edgpvd

It is diagonalized by the rotation by the angle 6’ deter-
mined from (18). For s'2, ¢’? and s'c¢’ one derives the follow-
ing useful expressions:

L 1 A-B
s==-(1+
2 (A— B)2+44D?
_lgy+95eqvy
4 g% etvy T

P A—-B
cc==-\11-
2 (A— B)2+44D?

_ 19y + 95 ejyvjy

=1 o, (A.1)

8 g9 esvs
V95 + 93 e 2
y -D 14/ %y ZeHvH+

s'c = = —
(A—B)?>+4D®> 2 gp €4}

Other useful expressions are

8/2 C/Q 1 62 9
Mz, Tz MZ0MZ, <432c2 ”H>
C/2 8/2 1
MZ, T MZ, T MM,

2 2.2, 22 2
(9B€HvE + gresve)

1 1 1 e
s'd — = (—gEeHv2 ) A2
(Mgo M%,) M2,M2, \2sc n) (A2
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and

2 2 e’ 2 2.2 2

MMz = 5 39R€5VRYS - (A.3)

Still other useful relations are

c'QMéo =Ad?+ Ds'd

s”M2, = Bs”?+Ds'c,

M2, = Bd? - Ds'c, (A4)

S/QM%/ = As"? - Ds'c .

Appendix B: Calculation of the input
observables agm, GF and My

Here we outline the calculation in the SU(2), x U(1)y x
U(1) g model of the basic input observables agym, Gy and
Myy . The formula for My is simple:

2
es ~

M, = @U%H-HWW (M) (B.1)
where ITyw (M%) includes in principle also the tadpole
contribution. Expressions for agy and Gy are derived
below.

B.1 Calculation of dagm

This is most easily computed using the effective La-
grangian technique [16]. Below the electroweak scale (the
renormalizable part of) the effective Lagrangian for elec-
tromagnetic interactions has the form

1
L=+ 02) fu f

+ (1+02%) Yei § Pripe

— (e +det+édz+ %é527> Ve ge A Py (B.2)
+ (1+028) i @ Prie

— (é+5e+é 525—1— %é 52“7) Ve ge A PR,

+ counterterms.

é+ de is the electromagnetic coupling of QED at the scale
just below the Fermi scale threshold; it can easily be re-
lated to agy via the RG running.

The factors 625 and 023t are such that they reproduce
at the tree level contributions of virtual W, Z° and Z’ to
the electron self-energies (computed at zero momentum).
Similarly,

02y = =L (0)lw,g+s

reproduces at the tree level the vacuum polarization due to
decoupled heavy particles W and top quark.

(B.3)
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AR
e ’ e e v e
AN

g g v

Fig. 2. Corrections to the photon—electron vertex in a model
with extra U(1). The external line momenta can be off-shell but
must be < M VA

The vertex corrections determining the combinations
de+é 52;“’13‘ + %é 0z, are shown in Fig. 2. Owing to the
U(1)y and U(1) g Ward identities the Z° and Z’ contribu-
tions to de are exactly canceled by the Z° and Z’ contri-
butions to 6z and §z%, respectively. The second diagram
in Fig. 2 is exactly as in the SM and combines with the W
contribution to §z&. As a result from the photon coupling
to left-chiral electrons one gets

lA ~ Zoﬁ ZO(O) Z/ﬁ Z’(O)
de =3¢ I0) + & =i = +eh =

é M3,
TR (Wdiv“ﬂ? |

The self-energies IALY 20(0) and ZAY,Y 2(0) receive contribu-
tions only from the virtual W+W— and W*GT pairs. We

get
e e 0 - 3 5 (0
] R

By using (A.2) and (A.3) this can be reduced to
1, - & M3
de = 3¢ I1,(0)— 32 (ndiv +In u—?’) ,

which (as could be expected) is the same as in the SM. The
same result is obtained by considering the photon coupling
to a right-chiral electron.

B.2 Calculation of 6GF

Calculation of §Gg proceeds as in the SM. The only mod-
ification is that there are additional box diagrams with Z’
and in addition the W boson self-energy ITyyw (¢?) as well
as the self-energies of external line fermions are modified by
the presence of Z’ (there are contributions from the virtual
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Z' and the couplings of Z° are modified). Still the formula ~ jez'w _ 3CZI: (_eé /)
€

=5
takes the form 3
2 2
é2 X ndiv__+ln M{j[/ + ~ MZ’A n]\?Z’ )
Gr = \/_ (1+Ag) = m(l'FAG)a 6 K M%/_MI%V M3,
AW = 382 | ng; 2 i ln My
with Ag given by (B.4): Y6 w )’
1T 0 so that the divergent part of Ais
AG: M+BW’Y+BWZO R
M, F (01—232—12(;2_622) _
Y By +2A+ 50+ 5. (B.4) T 43262 t9E | Tdiv -

Finally, for the self-energies Z:’VL and Z:’CL of the left-

Here Byy., is the contribution (in units of the tree level W chiral electron and neutrino, respectively, one gets

exchange) of the W+ box with a subtracted contribution of

the photonic vertex correction to the tree-level diagram in ye 62 1 N2
the low energy effective four-Fermi theory of 4~ decay: 16772, = 282 Ndiv + 5 +1In M—‘Q}V
é2 1 M3 0y 2 1 . M?
By, = —— v In =W ( Z ) ot 20
" 162 (”d Tt > + (e g +n—2
2
(this contribution is the same as in the SM), and By, 50 and n (Cf£> 2 2\
By 7 denote the contributions of the box diagrams with 2
W Z° and W Z', respectively: - -
9 ¢ é 1 Mg,
167 EeL:_A ndiv+_+1n—
1 70 70\ 2 70 50 28° 2 w
By 70 = 1672 [( eL> + <CVL> —8cey, CVL:| o2 ) M%o
M, M, + (Cd‘ ) VT 2
In
2 2 2
M — Mz My Z\2 12,
+ (CeL> Ndiv g )
0
and By is given by a similar expression with cg VL —
ch 1, and M2 — Mg/ with the divergent part
For the contrlbutlons A of individual diagrams to the . . 1
vertex corrections A = (1/1672) ", A®) one finds (2"L + EeL) dv 1672
é2 é2 9 9
0 0( 2 ) X §—2+4§2A2[1+(1—2s)]+2elgE Ndiv -
AT = —CLCL )
2 H Collecting all divergent parts, we get for the box, vertex
e 2 g ( + 1 o M%, ) and self-energy corrections exactly the same divergent part
= —c&.c, | maiv ) as in the SM
N PRI - e 4
AVWZ 3 ( gc/> (Bboxes+2A+ EEL—’_EVL)div _@g_Qndiv .
N (B.5)
5 . M M M
Naiv— = +1n ZV"‘ OA Z° )
6 p* o M2%2,— M2, M2,
AW _ gz ( é§8/> Appendix C: RG equation for vg
3

The most general scalar field potential in the model consid-

- §+ln Mj n M%/A In J\f[%/ 7 ered in this paper is
6 M2 —M%, MI%V As Ay
(S*S) +m4LH H+ == 1 L (HTH)?

+ H(S*S)(HT H).

z
R m25*S
AeZ°W — 30621? (égd) s iy
§

Ndiv — = +1n —2 W 20 1n—2%) Inorder to simplify the .forIr.lulae we have asst}med that at
one particular renormalization scale u, at which we chose
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to work, k(u) = 0. However, to derive the renormalization
group equation for vg one has to keep k. With

H= (V26
— V2 \vag +hP+iGy
(.1

S = %(US'FSO"‘iGS)v

~—

(where h® and S° are the physical Higgs scalars and Gy
and Gg are the fields whose appropriate linear combina-
tions G° and G’ become the longitudinal components of
the massive Z° and Z'), the formulae determining v% and

2
v read

1 1
mi + Z)\H’U%I + 5&@% =0,

1 1
m%+ Z)\S'U% + 5/@1/?{ =0.

Differentiating the second one with respect to p we get at

k=0
dv? 4
N—S - _
du As (

(C.2)

i dm%
du

Ll s 1, de
(C.3)

Thus, to find the derivative of v% at the scale u, such that
k() = 0 we need to get also dx/dt. Calculating derivatives
appearing in the right hand side of (C.3) is standard:

d
M@)\S =2e\s + 5% — 12)\sg5e% +24g et

d
,u—m?g = m?g (2)\3 — 6g%e§) , (C4)

dp
d 4 2 2
/J@K/ = 129E6SeH .

Using these results and (C.3) it is easy to derive

d 4 .,4,2 4.2 .2 9
pvd = 0 (<3hs +Ge}) — 24 0E5SUS TIBCCut
H S

(C.5)

Appendix D: Vector boson self-energies

The fermionic one-loop contribution to Ty w (¢?) in SU(2)
xU(1)g xU(1)y is as in the SM. For the bosonic part of
ITww (¢?) we have

e -/ 5 - . e -/ 5 - .
_§_2 (q 7MWaMhO)_§_2A (q 7MWaMZO>

~

2
+ SN bo (o, Mw, My ) + 2003, bo (g2, M, 0)

) 2
+ (—éic/+2eHgEs’> M‘%Vbo <q2,MW,MZo)
é
8 R NN
+ <é73/+2€H9Ec/> M, bo <(12,MW7MZ')
é

A2

o2 2 - . . - -
—€2§—2€I {814 <q2,MW,MZo) + <4q2+M€V+M§O)
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R . 2 g2
x by <q27MWaMZO)_ d }

3 1672
/\2 ~ R R R R
P [8A <q2, M, MZ,) n (4(]2 L NIR 4 Mg,)
S
2 ¢
31672

X bO <q2,MW7MZ’) -

_e? [821 <q2, N, 0) + (4q2 + M§V> bo <q2, N, 0)

(D.1)

The divergent part of this contribution taken at ¢® = 0 is

a2 62

Y 08 ~ ~
105w (O35 = (2525 N3+ Acha 83 ) s
(D.2)

(we have used ¢’ M;O +5" ]\Zf%, = MZ,/¢®). Tt differs from
the SM only by the last term.

Below we list all bosonic contributions to I1z, z,(q?) for
Z1Zy=2%2°2'7"',2°7":

/\2 _ N " N
WHW-— —é2§—2 {&4 (q2, MW,MW) + (4q2+2M3V)
/2
. 2 ¢ ¢
x b (qvaWyMW> —S L x| 2 ,
31672 —c's
GTWT: +2M5Vb0 (qQ,Mw, Mw)
(—€§C’+2€H9E8/)22
X (é§3’+2eHgEc’) )
(—é c’—|—2eHgEs’) (é%8/+2€HgECI)

> vl

GtG—:-A (qQ,MW,M )
o . 2
(écz_és2 c’+2eHgEs’)
« Ae2_g2 N 2
<—€T8 +26HgEc) )

<é —62552 d+ 2eHgEs’> <—é%s’ + 2€H9EC/>
GORr°: —A (q2,Mzo,Mh0)

(%c’—2eHgEs')2
A 2
X ) (§3’+26HQEC’) )
e ./ !/ e ./ /
(_EC +26HgE3) (gs +26HgEc)
o e5gps”
G'S°: —4A (qQ,MZ/,MSo> x | eXghc? |,
e2g%c's'
1 . .
Zoho : +Zﬁ12qb0 <q2, Mzo, MhO)
(—%c’—l—ZeHgEs’)4
X 2, 2
X (—§C’+26HQE3’) (§3’+26H9Ec’) )
é N3 (e /
(—gc —|—2eHgEs) (53 +26HgEc)
1 ~ ~
2K + b <q2, My, Mho)
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(—g%c/+2€HgE3')2 (§%8'+2€H9EC')2
X (gi;s’+26HgEc') )
(&£ +2epgps’) (&5 +2€H9EC/)3

4

7080 : +402edghbo <q2,MZo,MSo> [ e2s2 ],
/13
cCS

C/23/2

Z'8°: +402ebghby (q2, My, MSO) x| e
/. /!
c™S

To simplify the calculations we have assumed here that the
scalar fields H and S do not mix in the potential, so that
the Higgs boson h° comes only from the doublet H, and S°
comes only from the singlet S°.

The fermion contribution to ITz, z,(¢?) reads

13 (¢*) = SN {2 (i + cFachi ) m?
f
x bo (¢*, mys, my) + (cfzﬁcfzﬁ + CfZéCfZé)
X {4[1 (q2, mpy, mf) + (q2 — Qm?)

x bo (¢*,mys, my)] } , (D.3)

where N, is the color factor and the couplings cfZLi, cfZPi can
be read off from (20) and (21).
Appendix E: Loop functions

Here we define some loop functions to make the calcula-
tions presented in the text complete. We have

m2
167‘r2a(m) =m? (ndiv_1+ln F) , (E.1)
1
1672bo (%, m1, m2) :ndiv—l—/ dz
0
< In Pz(r—1)+zm3+ (1 —z)m3
I ’
(E.2)
m? m?
167%bo (0 = Ndiy — 1 + —5—— In —&
mbo(0,m1,m2) =14 +m%—m§ no2
2 2
my my
——=—~1In—= E3
TmEemi e =3
- 1 1
A (q ,m1,m2) = _Ea(ml) - Ea(mz)
1 2 s 2
+5 (m1+ 2 5) bo (¢%,m1,m2)
m% m% 2
T [a(m1) — a(mg) — (m] —m3)

X bo (¢°,m1,ms)]

205
1 1 q°
The divergent part of fl(qz, my,mg) is
- 1
1672 {A (q2, mi, m2)} div = _Eq277div ) (E5)
and A(O, m1,ms) is finite and reads
~ 1 2m2m? m?
2 2 2 1m3 1
167 A(O,ml,mQ) = —g |:m1 —I—m2 — m log m—g
1
= —gg(ml,mg) . (E.6)
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