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Abstract. We consider the electroweak theory with an additional neutral vector boson Z′ at one loop. We
propose a renormalization scheme which makes the decoupling of heavy Z′ effects manifest. The proposed
scheme justifies the usual procedure of performing fits to the electroweak data by combining the full SM
loop corrections to observables with the tree-level corrections due to the extended gauge structure. Using
this scheme we discuss in the model with extra an U(1)′ group factor one-loop results for the ρ parameters
defined in several different ways.

1 Introduction

For various reasons new physics is expected to show up
at the TeV scale. One of the possibilities, not the least
likely one, is that extra gauge boson with masses ∼ 1 TeV
should be discovered. They are predicted by various string
inspired models as well as by some models aiming at solv-
ing the hierarchy problem of the SM. Here belong for ex-
ample Little Higgs models [1] or models combining super-
symmetry with the idea of the Higgs doublet as a pseudo-
Goldstone boson [2, 3]. Before the advent of the LHC, the
electroweak data are used to constrain parameter spaces of
such models.
The standard methodology used in testing models of

new physics against the electroweak data is that one com-
bines the full one-loop (and also dominant two-loop) cor-
rections to the relevant observables calculated within the
SM with modifications stemming from new physics (new
gauge bosons, new fermions, etc.) accounted for at the tree
level only. Given that the top quark mass is known fairly
well, this allows one to constrain other parameters of these
models [4].
However, some doubts have been expressed in the lit-

erature [5–7] about the validity of this standard approach
in models with extended gauge sector. In particular, it
has been argued that this approach is not valid in theo-
ries in which at the tree level ρ �= 1 since then the entire
structure of loop correction is altered and the Appelquist–
Carrazzone decoupling does not hold.
To investigate the problem in more detail we consider

in this paper the simplest extension of the SM with an ad-
ditional U(1)E gauge group and study the one-loop renor-
malization of the model.1 We propose a renormalization

a e-mail: Piotr.Chankowski@fuw.edu.pl
1 For earlier discussions of the renormalization of the SU(2)×
U(1)1×U(1)2 models see [8, 9].

scheme in which the Appelquist–Carrazzone decoupling is
manifest. It combines the on-shell renormalization for the
three input observables for which we conveniently choose
αEM, GF and MW with the MS scheme for the additional
parameters introduced by the extended gauge sector. The
final expressions for measurable quantities are such that

– they coincide with the SM expression forMZ′ →∞;
– explicit renormalization scale dependence is only in the
MZ′ suppressed terms;
– they are scale independent when the RG running of
the parameters is taken into account. Tadpoles play the
crucial role here.

Our scheme can be contrasted with other renormalization
schemes used in the literature in which the explicit de-
coupling of heavy particles (Z ′) is lost because also the
couplings related to the extended gauge sector (couplings
of the U(1)E gauge boson) are expressed in terms of the
low energy observables additional to αEM, GF andMZ (or

MW ), like sin
2 θeff� or ρ. Our scheme can universally be used

forMZ′ ∼MZ0 orMZ′ �MZ0 whereas the other ones are
practical only for MZ′ ∼MZ0 . Indeed, for MZ′ �MZ0 ,

using e.g. sin2 θeff� as an additional input parameter for fix-
ing the coupling of Z ′ leads, because of the lack in such
a scheme of explicit Appelquist–Carrazzone decoupling,
to uncertainties which become larger the larger is the Z ′

mass. The scheme proposed in this paper allows us to di-
rectly constrain by the electroweak data the MS running
parameters of the extended model at a conveniently cho-
sen renormalization scale µ, with αEM, GF and MW cho-
sen as input observables. Furthermore, for MZ′ �MZ0 it
lends justification to the standard approach to testing such
a model against electroweak data and makes it rigorous by
specifying what parameters are being constrained.
As an illustration of the use of our renormalization

scheme and in order to demonstrate that it leads to ex-
plicit Appelquist–Carrazzone decoupling we clarify vari-
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ous aspects of the ρ parameter(s) in the SU(2)×U(1)1×
U(1)2 model. First of all, we discuss in detail various def-
initions of ρ and the corresponding tree-level results. In-
terestingly enough, there exists a definition of ρ in terms
of the low energy neutral to charged current ratio for neu-
trino processes which leads to ρlow = 1 as in the SM. Next,
we calculate loop corrections to these different ρ param-
eters and show that in the renormalization scheme with
explicit Appelquist–Carrazzone decoupling the celebrated
m2t/m

2
W contribution is always present. The milder, loga-

rithmic dependence on mt claimed in [5, 6] is an artifact
of the renormalization scheme in which there is no explicit
Appelquist–Carrazzone decoupling.
We also elucidate some specific technical aspects of

a theory with U(1)1×U(1)2 group factor related to the
mixing of the two corresponding gauge bosons resulting in
some peculiarities of the RG running of the U(1) gauge
couplings.
The plan of the paper is as follows. In Sect. 2 we re-

call the general structure of the U(1)1×U(1)2 gauge the-
ory and introduce effective charges which allow one to
cast the Lagrangian in a simple form. We express the
renormalization group equations for the U(1) couplings
in terms of these effective couplings. We also introduce
the simplest extension of the SM by an extra U(1) group
factor (with an SU(2) singlet scalar vacuum expectation
value (VEV) breaking the extra U(1)) which will serve us
as a laboratory to illustrate our main points concerning
the loop corrections to electroweak observables. In Sect. 3
we define different ρ parameters, calculate them at tree
level in the model introduced in Sect. 2 and show that the
leading order contribution of Z ′ to these parameters can
be also obtained in the approach using the Appelquist–
Carrazzone decoupling. In Sect. 4 we define our renormal-
ization scheme, and apply it in Sect. 5 to calculate the cor-
rections to the low energy ρ parameter defined in terms
of the neutrino processes. In Sect. 6 we illustrate the in-
terplay of the proposed scheme with the renormalization
group equations derived in Sect. 2 on the one-loop calcu-
lation of the Z0 mass. Finally, in Sect. 7 we briefly discuss
the calculation of the dominant top–bottom contribution
to the parameter ρ defined in terms of the Z0, W± gauge
boson masses and sin2 θ�eff parametrizing the coupling of
the on-shellZ0 to leptons. Several appendices contain tech-
nical details necessary in the analyses presented in the
main text.

2 U(1)1×U(1)2 gauge theory:
couplings and their RG equations

The most general kinetic term for twoU(1) gauge fields has
the form

Lkin =−
1

4
f1µνf

1
µν −

1

4
f2µνf

2
µν −

1

2
κf1µνf

2
µν . (1)

κ is a real constant constrained by the condition |κ| < 1.
The most general covariant derivative of a matter field ψk

is

Dµ = ∂µ+i
2∑

a=1

2∑

b=1

Y ak gabA
b
µ , (2)

where the constants Y ak play the role of the U(1) charges
ofψk and gab are the coupling constants (running couplings

in the MS renormalization scheme). The gauge transform-
ations then are

Aaµ→A
a
µ+∂µθ

a ,

ψk→ exp

(
−i

2∑

a=1

2∑

b=1

Y ak gabθ
b

)
ψk . (3)

The existence of a whole matrix gab of couplings in place
of only one gauge couplings per each U(1) group factor is
a peculiarity of the theory with multiple U(1)’s [10, 11].
Even if not introduced in the original Lagrangian, the last
term in (1) and the matrix gab of couplings are generated in
the effective action by radiative corrections.
To have simple forms for the tree-level propagators, it is

convenient to work in the basis in which the tree-level ki-
netic mixing is removed.2 By expressing the original A1,2µ
fields in terms of the new fields denoted byAYµ andA

E
µ (be-

cause they will play the roles of the weak hypercharge and
extra U(1) gauge bosons, respectively), we have

A1µ =
1√
2(1+κ)

AYµ +
1√
2(1−κ)

AEµ ,

A2µ =
1√
2(1+κ)

AYµ −
1√
2(1−κ)

AEµ , (4)

and the kinetic cross term disappears (but there will be
a counterterm −(1/2)δZfEµνf

Y
µν) and the general form (2)

of the covariant derivative does not change. Thus, for each
matter field k there are charges Y Ek and Y

Y
k and there are

four couplings gYY, gYE , gEY, gEE. Only three of them
are independent [10]: the U(1) gauge fields can be rotated:
AY = cosϑÃY − sinϑÃE , AE = sinϑÃY +cosϑÃE , with-
out reintroducing the kinetic cross term, and such a rota-
tion induces the corresponding rotations of couplings

(
g̃YY
g̃YE

)
=

(
cosϑ sinϑ
− sinϑ cosϑ

)(
gYY
gYE

)

(
g̃EY
g̃EE

)
=

(
cosϑ sinϑ
− sinϑ cosϑ

)(
gEY
gEE

)
. (5)

The angle ϑ can be chosen so that one of the four couplings
vanishes. It is also easy to check that the combinations

gEEgYY− gEYgYE , g
2
EE+ g

2
EY ,

gYEgEE+ gEYgYY , g
2
YY+ g

2
YE (6)

are the invariants of the rotations (5).

2 It is also possible to work with non-diagonal kinetic
terms [11, 12].
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The renormalization group equations for the couplings
gab can be computed in the standard way [10, 11] with the
result

µ
d

dµ
gba =

1

16π2

∑

c,d,e

gbc

×

⎡

⎣2
3

∑

f

(
Y df Y

e
f

)
+
1

3

∑

s

(
Y ds Y

e
s

)
⎤

⎦ gdcgea ,

(7)

where the first sum is over left-chiral fermions and the sec-
ond one over complex scalars of the theory.
As an realistic extension of the SM we consider a theory

with the SU(2)L×U(1)Y ×U(1)E electroweak symmetry
spontaneously broken down to U(1)EM. The required sym-
metry breaking is ensured by vacuum expectation values
of the SU(2) doublet H and of the singlet S. We assume
that S is charged under only one U(1), that is Y YS = 0 (but
Y YH �= 0 and Y

E
H �= 0), so that 〈S〉= vS/

√
2 leaves unbroken

SU(2)L×U(1)Y . It is then convenient to make the orth-
ogonal field redefinition (which does not reintroduce the
kinetic mixing term)

Eµ =
gEEA

E
µ + gEYA

Y
µ√

g2EE+ g
2
EY

, Bµ =
−gEYAEµ + gEEA

Y
µ√

g2EE+ g
2
EY

,

(8)

where Eµ is the combination which becomes massive after
U(1)E breaking by vS �= 0, and Bµ will play the role of the
weak hypercharge gauge field. The couplings of the generic
matter field ψk to Eµ and Bµ are then given by

gyYkBµ+
(
gEY

E
k + g

′Y Yk
)
Eµ , (9)

where

gy ≡
gEEgYY− gEYgYE√

g2EE+ g
2
EY

,

[4pt]gE ≡
√
g2EE+ g

2
EY ,

g′ ≡
gYEgEE+ gEYgYY√

g2EE+ g
2
EY

(10)

are invariants of the transformations (5). Because only
three couplings are physical the last invariant, g2YY+ g

2
YE

in (6), which does not enter the definitions of gy, gE and g
′ ,

can be expressed in terms of these:

g2YY+ g
2
YE = g

2
y+ g

′2 . (11)

From (9) it follows that Y Yk corresponds to the SM hy-

percharge.We assume therefore, that the factors Y Yk are as
in the SM, in particular, Y YH =

1
2 . It will also prove conve-

nient to introduce effective charges ek and to rewrite the
couplings of matter fields to the extra gauge boson Eµ in
the form

gEek ≡ gEY
E
k + g

′Y Yk . (12)

With the factors ek the matter Lagrangian can be written
in the naive form (frequently used in the literature [13, 14])
as if there were no mixing of the two U(1) group factors.
It is however important to remember that the ek are just
a means to compactly write the couplings. They are not
quantum numbers (charges) – except for eS which is con-
stant. They do run with the scale: their RG running can be
determined from the running of gEE , gYY, gEY, gYE and
of gE .
The closed system of the RG equations for the three

couplings (10) can be readily derived from the general for-
mula (7). Note that these couplings are defined at any
renormalization scale µ in the (rotating) basis in which the
kinetic mixing term is absent. Using (11) one finds

d

dt
gE =A

EEg3E+2A
EYg2Eg

′+AYYgEg
′2 ,

d

dt
gy =A

YYg3y , (13)

d

dt
g′ =AYYg′

(
g′2+2g2y

)
+2AEYgE

(
g′2+ g2y

)

+AEEg2Eg
′ ,

where

Aab =
2

3

∑

f

(
Y af Y

b
f

)
+
1

3

∑

s

(
Y as Y

b
s

)
. (14)

With the identification of Y Yk as SM hypercharges, the
running of gy is exactly as in the SM. This could be ex-
pected because of the U(1) Ward identity, which ensures
the absence of threshold corrections to gy when the heavy
massive Eµ field is decoupled.
In the calculations presented in the following sections

we will need RG equations for the combinations e2Sg
2
E and

e2Hg
2
E defined by (12). Using (13) and (14) these RG can be

also expressed in terms of the effective couplings (12):

d

dt
e2Sg

2
E = 2e

2
Sg
2
E

⎛

⎝2
3

∑

f

(efgE)
2+
1

3

∑

s

(esgE)
2

⎞

⎠

d

dt
e2Hg

2
E = 2e

2
Hg
2
E

⎛

⎝2
3

∑

f

(efgE)
2+
1

3

∑

s

(esgE)
2

⎞

⎠

+4eHgE

×

⎛

⎝2
3

∑

f

efgEY
Y
f Y

Y
H +

1

3

∑

s

esgEY
Y
s Y

Y
H

⎞

⎠ g2y ,

(15)

Finally, we recall the formulae derived in [13] for gauge bo-
son masses appearing as a result of the electroweak break-
ing by 〈S〉 = vS/

√
2 and 〈H0〉 = vH/

√
2. The W± boson

mass is given as in the SM by M2W =
1
4g
2
2v
2
H , whereas

the mass matrix of the neutral gauge bosons in the basis
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(Bµ,W
3
µ , Eµ) reads

M2
neut =⎛

⎜⎝

1
4g
2
yv
2
H − 14gyg2v

2
H

1
2gygEeHv

2
H

− 14gyg2v
2
H

1
4g
2
2v
2
H − 12g2gEeHv

2
H

1
2gygEeHv

2
H − 12g2gEeHv

2
H g2E

(
e2Hv

2
H + e

2
Sv
2
S

)

⎞

⎟⎠ .

(16)

It is diagonalized by two successive rotations so that the
mass eigenstates are given by

⎛

⎝
Bµ

W 3µ
Eµ

⎞

⎠=

⎛

⎝
c −sc′ ss′

s cc′ −cs′

0 s′ c′

⎞

⎠

⎛

⎝
Aµ
Z0µ
Z ′µ

⎞

⎠ , (17)

where c≡ cos θW, s≡ sin θW are as in the SM: s/c= gy/g2,
and c′ ≡ cos θ′, s′ ≡ sin θ′, where

tan 2θ′ =
2
(
− 12

√
g2y+ g2gEeHv

2
H

)

1
4

(
g2y+ g

2
2

)
v2H− g

2
E (e

2
Hv
2
H + e

2
Sv
2
S)
. (18)

The masses of the two gauge bosons, Z0 and Z ′ are given
by

M2Z0 =
1

2

(
A+B−

√
(A−B)2+4D2

)
,

M2Z′ =
1

2

(
A+B+

√
(A−B)2+4D2

)
, (19)

where A = M2W/c
2, B = e2Sg

2
Ev
2
S + e

2
Hg
2
Ev
2
H and D =

−(e/2sc)eHgEv2H . The electric charge e is given by the
same formula as in the SM: e= gyc = g2c. In AppendixA
we record some formulae which will prove indispensable in
various manipulations.
The interactions of the matter fermions with Z0 and Z ′

bosons takes the form

Lint =−J
µ

Z0
Z0µ−J

µ
Z′
Z ′µ ,

where the currents are easily found to be

Jµ
Z0
=

∑

f=ν,e,u,d

[ e
sc

(
T 3f − s

2Qf
)
c′+ efgE s

′
]
ψ̄fγ

µPLψf

+
∑

f=e,u,d

[ e
sc

(
−s2Qf

)
c′− efcgE s

′
]
ψ̄fγ

µPRψf ,

(20)

Jµ
Z′
=

∑

f=ν,e,u,d

[
−
e

sc

(
T 3f − s

2Qf
)
s′+ elgE c

′
]
ψ̄fγ

µPLψf

+
∑

f=e,u,d

[
−
e

sc

(
−s2Qf

)
s′− efcgE c

′
]
ψ̄fγ

µPRψf ,

(21)

where PL =
1
2 (1− γ

5), PR =
1
2 (1+ γ

5). The factors in

square brackets in (20) and (21) define the couplings cZ
0

fL,R

and cZ
′

fL,R.

Gauge invariance of the Yukawa couplings of the matter
fields

LYuk =−yeH
∗
i lie

c−ytεijHiqju
c−ydH

∗
i qid

c

imposes the conditions (see (3))

Y aec +Y
a
l −Y

a
H = 0 ,

Y auc +Y
a
q +Y

a
H = 0 ,

Y adc+Y
a
q −Y

a
H = 0 ,

where a=E, Y . When combined with (12) they imply

eec + el− eH = 0 ,

euc + eq+ eH = 0 , (22)

edc+ eq− eH = 0 .

3 ρ parameters in the
SU(2)L×U(1)Y ×U(1)E model
and the Appelquist–Carrazzone decoupling

In this section we define various measurable ρ parameters
in the SU(2)L×U(1)Y ×U(1)E model and show that at
the tree level the effects of the heavy Z ′ decouple. We then
identify the dimension six operators which, when added to
the SM Lagrangian, reproduce at the tree level the lead-

ing (in inverse powers of v2S) corrections to the low energy
observables due to Z ′.

3.1 ρ parameters

In the SM the measurable parameter ρ can be defined in
several different ways. The simplest is the definition of ρ
(call it ρlow) as the ratio of the coefficients of the neutral
and charged current terms in the effective low energy four-
fermion Lagrangian. Another one is

ρ=
M2W

M2
Z0
(1− sin2 θ)

, (23)

with sin2 θ related to measurable quantities in various
ways, e.g. as the parameter in the on-shell Z0 couplings to
fermions as in (24), or by the low energy neutral current
Lagrangian for e.g. neutrino processes (i.e. as a parame-
ter measuring the admixture of the vector-like electromag-
netic current in the leptonic weak neutral current in the
low energy four-fermion Lagrangian mentioned above). Fi-
nally, ρ (call it ρZf ) can be defined through the coupling of
the on-shell Z0 to fermion–antifermion pairs expressed in
terms of the Fermi constant measured in the muon decay:

LZ
0ff̄ on shell
eff =−

(√
2GFM

2
Z0ρZf

)1/2
ψ̄fγ

µ

×
(
T 3f −2Qf sin

2 θfeff−T
3
f γ
5
)
ψfZ

0
µ .

(24)
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Independently of the definition used, ρ= 1 at the tree level
due to the custodial SU(2)V symmetry of the SM Higgs
potential. Thus, in the SM ρ = 1 is the so-called natural
relation, i.e. the prediction which does not depend on the
values of the parameters of the model. Of course, quantum
corrections to ρ are numerically different for different defi-
nitions and do depend on the values of the SM parameters.
The usefulness of ρ stems from the fact that the domin-
ant contributions (dependent on the top quark and Higgs
boson masses) to it are universal, that is, the same for all
definitions of ρ.
Although the different ρ are observables (they are all

defined in terms of measurable quantities) none of them
can be used as an input observable in the procedure of
renormalization of the SM, just because ρ= 1 is the natural
relation.
In the SU(2)L×U(1)Y ×U(1)E model custodial sym-

metry is broken at the tree level by the Z0–Z ′ mixing. It
is then necessary to discuss the analogous ρ parameters in
some detail. The parameters ρ and ρZf can be defined as
in the SM, i.e. by (23) and (24), respectively. The param-
eter ρlow is special, because it refers to the specific form of
the low energy effective Lagrangian which needs not be the
same as in the SM. In models in which the charged weak
currents are unmodified with respect to the SM the effect-
ive Lagrangian for low energy weak interactions takes the
general form

Leff =−2
√
2GFJ

µ
+J−µ+

1

2

×
∑

f1

∑

f2

[
a
f1f2
LL

(
ψ̄f1γ

µPLψf1
) (
ψ̄f2γ

µPLψf2
)

+af1f2RR

(
ψ̄f1γ

µPRψf1
) (
ψ̄f2γ

µPRψf2
)

+af1f2LR

(
ψ̄f1γ

µPLψf1
) (
ψ̄f2γ

µPRψf2
)

+af1f2RL

(
ψ̄f1γ

µPRψf1
) (
ψ̄f2γ

µPLψf2
)]
, (25)

where Jµ± are the standard charged currents. In the SM the
second part of (25) can be rewritten in the form of the
product of two neutral currents

LNCeff =−2
√
2GFJ

µJµ , (26)

where

Jµ =
∑

f

√
ρf ψ̄fγ

µ
(
T 3f PL− sin

2 θefff Qf
)
ψf . (27)

Moreover, if the fermion mass effects are neglected ρf and
sin2 θefff are universal, ρf = ρ, and sin

2 θefff = sin
2 θeff. ρ can

then be factorized out of the neutral current Jµ, and ρ= 1.
The necessary condition to define the low energy pa-

rameter ρf (possibly dependent on the fermion type) in
the SU(2)L×U(1)Y ×U(1)E model is that the second part
of (25) can be written in the current× current form (26).
One would then have

√
ρf1ρf2 =−

af1f2LL +a
f1f2
RR −a

f1f2
LR −a

f1f2
RL√

2GF2T 3f12T
3
f2

. (28)

Computing the diagrams with exchanges of Z0 and Z ′ be-
tween the two currents Jµ

Z0
, see (20), and two currents Jµ

Z′
,

see (21), respectively, and exploiting the relations (A.2)
and (A.3), it is easy to find

af1f2LL +a
f1f2
RR −a

f1f2
LR −a

f1f2
RL =

−
1

v2H
2T 3f12T

3
f2
−

( (
2T3f1

eHgE+ef1
gE+efc1

gE

)

×
(
2T3f2

eHgE+ef2
gE+efc2

gE

)
)

e2Sg
2
Ev
2
S

(29)

Due to the relations (22) the second term vanishes and,
since at the tree level 1/v2H =

√
2GF, we find (to some sur-

prise) that in the SU(2)L×U(1)Y ×U(1)E model at the
tree level

a
f1f2
LL +a

f1f2
RR −a

f1f2
LR −a

f1f2
RL =−2T

3
f1
2T 3f2

√
2GF (30)

as in the SM. However, writing the second part of (25) in
the familiar current× current form is not always possible.
It is only possible, if the following consistency condition
holds:

(
af1f2RR −a

f1f2
LR

)(
af1f2RR −a

f1f2
RL

)
=−4

√
2GFa

f1f2
RR

(31)

(it follows from the fact that the form (26) depends only on

three unknown:
√
ρf1ρf2 , sin

2 θefff1 and sin
2 θefff2 , whereas the

general form of the second term in (25) has four indepen-
dent coefficients). It is straightforward to check that the
condition (31) is not satisfied in general. It is satisfied only
by that part of (25) which describes neutrino reactions. In

this case af1νiLR = a
f1νi
RR = a

νjνi
RR = 0 and the condition (31)

is trivially satisfied. Thus, for neutrino processes one can
define the analog of the SM ρ parameter as ρlow ≡

√
ρνρf

and from (29) it follows that at the tree level ρlow = 1 as in
the SM.
In the general case in the SU(2)L×U(1)Y ×U(1)E

model even the generalized low energy parameters ρf can-
not be defined because the second part of the effective
Lagrangian (25) cannot be written in the current× current
form.
It is interesting to contrast ρlow discussed above, for

which ρlow = 1 at the tree level is a natural relation, with
e.g. ρ =M2W/M

2
Z0
(1− sin2 θ), with sin2 θ identified with

sin2 θ�eff in (24). We find

sin2 θ�eff = s
2 1−

c
se�c

gE
e
s′

c′

1−2sc eH
gE
e
s′

c′

≈ s2+ s2
(
2sc eH−

c

s
e�c
) gE
e

s′

c′
+ . . .

= s2+

(
s2 eH−

1

2
e�c

)
eHv

2
H

e2Sv
2
S

+ . . . , (32)
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where we have used (A.1).3 Using (19) we then get

ρ≈

(
1+
e2Hg

2
Ev
2
H

e2Sg
2
Ev
2
S

+ . . .

)

×

[
1+

(
s2

c2
eH −

1

2c2
e�c

)
eHv

2
H

e2Sv
2
S

+ . . .

]

= 1+O

(
v2H
v2S

)
. (33)

The important difference between ρlow and ρ in the
SU(2)L×U(1)Y ×U(1)E model is that the latter does de-
pend on some combination of the Lagrangian parameters.4

From the above results it is clear that the Appelquist–
Carrazzone decoupling holds at the tree level in the
SU(2)L×U(1)Y ×U(1)E model. It is also easy to show
that it can be easily masked by choosing a low energy ob-
servable like sin2 θ (and in addition MZ′) to fix e.g. the
coupling gE . To simplify the argument, let us assume that
e�c = 0 (at the renormalization scale we are working). Then

e2Hv
2
H/e

2
Sv
2
S in (33) can be directly expressed in terms of

sin2 θ�eff from (32) so that

ρ≈

(
sin2 θ�eff
s2

+ . . .

)[
1+
sin2 θ�eff− s

2

c2
+ . . .

]
, (34)

and the decoupling is lost!
In the next subsection we show the dimension six op-

erators completing the SM Lagrangian, which reproduce
leading terms of the corrections to the electroweak observ-
ables found at the tree level.

3.2 Decoupling at the tree level

At the tree level the subgroup U(1)E can be broken inde-
pendently of the breaking of SU(2)L×U(1)Y . In this case
the gauge field Eµ becomes Z

′ with a massM2Z′ = e
2
Sg
2
Ev
2
S .

For vS much higher than the Fermi scale, the electroweak
observables can be calculated in the SU(2)L×U(1)Y ef-
fective theory (which is just the SM) supplemented with
higher dimensional operators generated by decoupling of
heavy Z ′. This approach yields corrections to the elec-
troweak observables due to Z ′ effects in the form of power
series in 1/vS. Below we display the dimension six oper-
ators which reproduce the corrections to different ρ and
sin2 θ from the preceding subsection up to O(1/v4S).

3 Defining sin2 θ in terms of the structure of the current (27)
for neutrino processes we would get

sin2 θ = s2+(eH + el)

(
s2eH −

1

2
eec

)
v2H
e2Sv

2
S

.

4 The fact that at the tree level ρlow = 1 as in the SM makes
this observable useless for constraining the SU(2)L×U(1)Y ×
U(1)E model as the effects of new physics will be always much
larger in observables which are modified already at the tree
level.

Exchanges of Z ′ between fermion lines are taken into
account by adding to the SM Lagrangian the four-fermion
non-renormalizable operators of the type

∆LSM =−
1

e2Sg
2
Ev
2
S

e2l g
2
E

[
ψ̄lAγ

µPLψlA
] [
ψ̄lBγ

µPLψlB
]

−
1

e2Sg
2
Ev
2
S

el(−eec)g
2
E

[
ψ̄ec
A
γµPRψec

A

]

×
[
ψ̄lBγ

µPLψlB
]
. (35)

The kinetic term of the electroweak Higgs doublet H
gives rise, through the first diagram of Fig. 1, to a non-
renormalizable term of the form

∆LSM =−
1

2
(2eHgE)

2 1

e2Sg
2
Ev
2
S

×

[
H†
(
g2W

a T a+
1

2
gyB

)
H

]2
. (36)

Finally, the second diagram shown in Fig. 1 gives rise to the
interaction:

∆LSM =
∑

f

2efeHg
2
E

1

e2Sg
2
Ev
2
S

×

[
H†
(
g2W

a
µT
a+
1

2
gyBµ

)
H

] [
f̄ σ̄µf

]
.

(37)

After the electroweak symmetry breaking, the opera-

tor (36) gives the correction to the Z0 mass squared

∆M2
Z0
= −(M2

Z0
)SM(e

2
Hv
2
H/e

2
Sv
2
S), whereas the opera-

tor (37) modifies the Z0 couplings to the SM fermions:

∆LSM =−
∑

f

e

2sc

efeH

e2S

v2H
v2S
Z0µ
[
f̄ σ̄µf

]

≈−
∑

f

efgEs
′Z0µ

[
f̄ σ̄µf

]
;

they just correspond to terms efgEs
′ expanded to order

1/v2S in the Z
0 couplings; see (20).

At the tree level the three operators (35)–(37) re-
produce to order 1/M2Z′ ∼ 1/v

2
S all corrections to the

low energy (compared to vS) observables due to the ex-
tended gauge structure of the model. This is equivalent to
the statement that the Appelquist–Carrazone decoupling
works for Z ′ (at least) at the tree level.
We can illustrate this approach by calculating the cor-

rections due to the higher dimensional operators (35)–(37)

Fig. 1. Generating four-fermion operators by the heavy Z′
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to the parameter ρlow. To this end it is sufficient to find
the difference a�νLL−a

�ν
RL of the coefficients in the effective

Lagrangian (25). In the SM a�νLL−a
�ν
RL = (e

2/4s2c2M2
Z0
) =

1/v2H , and since at the tree level 1/v
2
H =
√
2GF, we have

ρlow = 1. The corrections due to the extended gauge struc-
ture read

(
∆a�νLL

)
Z′
=−

1

g2Ee
2
Sv
2
S

e2l g
2
E ,

(
∆a�νRL

)
Z′
=

1

g2Ee
2
Sv
2
S

eleecg
2
E (38)

from the operator (35),

(
∆a�νLL

)
Z′
=
e2

4s2c2
(
1−2s2

) 1

M2
Z0

e2Hv
2
H

e2Sv
2
S

,

(
∆a�νRL

)
Z′
=
e2

4s2c2
(
−2s2

) 1

M2
Z0

e2Hv
2
H

e2Sv
2
S

, (39)

from the correction to the Z0 mass produced by the opera-
tor (36), and

(
∆a�νLL

)
Z′
=−

e2

2c2
1

M2
Z0

eleHv
2
H

e2Sv
2
S

,

(
∆a�νRL

)
Z′
=−

e2

4s2c2
1

M2
Z0

(
2s2el− eec

) eHv2H
e2Sv

2
S

, (40)

from the correction to the Z0 couplings produced by the
operator (37). Combining these three corrections we find,
using the relations (22), that ∆(a�νLL−a

�ν
RL) = 0. Other ob-

servables can be checked similarly. Corrections subleading
in 1/vS can also be reproduced upon inclusion in the SM
Lagrangian operators of dimension higher than six.
The equivalence of the two approaches (full calcula-

tion versus higher dimensional operators) checked above
shows that the Appelquist–Carrazzone decoupling holds at
the tree level. The expectation that it should hold in the
SU(2)L×U(1)Y ×U(1)E model to all orders is based on
the observation that U(1)E can be broken independently
of the breaking of SU(2)L×U(1)Y . We will propose the
scheme which makes it explicit at one loop and thus show
that in particular it is not spoiled by the mixing of the
gauge fields corresponding to the two U(1) groups.

4 Renormalization scheme

Before we define our renormalization scheme for the
SU(2)L×U(1)Y ×U(1)E extension of the SM, it is instruc-
tive to recall the simplest possible approach to calculating
loop corrections to the electroweak observables within the
SM [15, 16].
Basic (running) parameters of the SM are5 ĝy, ĝ2 and

v̂H (or any three other functions of these parameters, e.g.

5 We denote running parameters which are traded for observ-
ables by a hat.

α̂, M̂Z and ŝ
2). In the renormalization procedure they are

expressed in terms of the values of the three experimentally
measured observables. Traditionally one chooses for this
purpose GF, αEM andMZ . These quantities are computed
in perturbation calculus using for example the dimensional
regularization and the MS subtraction:

αEM =
ĝ2y ĝ

2
2

4π
(
ĝ2y+ ĝ

2
2

) + δαEM =
ê2

4π
+ δαEM = α̂+ δαEM

M2Z =
1

4

(
ĝ2y+ ĝ

2
2

)
v̂2 =

1

4

ê2

ŝ2ĉ2
v̂2+ δM2Z = M̂

2
Z + δM

2
Z ,

(41)

GF =
1
√
2v̂2
+ δGF =

ê2
√
24ŝ2ĉ2M̂2Z

+ δGF = ĜF+ δGF .

As the corrections δαEM, δM
2
Z and δGF are calculated in

terms of the parameters α̂, M̂2Z and ŝ
2 the above relations

have to be inverted recursively. At the one-loop order this
is particularly simple:

α̂= αEM− δαEM ,

M̂2Z =M
2
Z− δM

2
Z , (42)

ĜF =GF− δGF ,

where in δαEM, δM
2
Z and δGF one replaces the parameters

α̂, M̂2Z and ŝ
2 by αEM,MZ and GF using the tree-level re-

lations. For any other measurable quantityA we then have

A=A(0)
(
α̂, M̂2Z , ĜF

)
+ δA

(
α̂, M̂2Z , ĜF

)
+ . . . ,

(43)

where δA is the one-loop contribution to the quantity A.
This is next written as

A=A(0)
(
αEM,M

2
Z, GF

)
+ δA

(
αEM,M

2
Z , GF

)

−
∂A(0)

∂αEM
δαEM−

∂A(0)

∂M2Z
δM2Z −

∂A(0)

∂GF
δGF . (44)

The expression (44) is finite and independent of the renor-
malization scale µ.
The free running parameters of the SU(2)L×U(1)Y ×

U(1)E extension of the SM are g2, vH and vS and the cou-
plings gEE , gEY, gYY and gYE (in fact only three of them).
One way of organizing higher loop calculations in such
amodel is to follow the recipe sketched above and to choose
the appropriate number of input observables, in terms of
which one would express all the running parameters.
Clearly, for MZ′ �MZ0 the parameters of the model

form two sets: g2, gy and vH describe the SM electroweak
sector, and vS and the remaining gauge couplings describe
the Z ′ sector. However, since the Z ′ boson has not yet
been discovered and its mass is unknown (assuming it ex-
ists), the best way to organize loop calculations is such that
the Appelquist–Carrazzone decoupling (in the case Z ′ is
heavy) would be manifest. This condition is not satisfied
by schemes in which additional parameters related to the
heavy particle sector are expressed in terms of low energy
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observables. Decoupling would be manifest if all additional
parameters were related to the measurable characteristics
of the heavy particles. Independently of the question of
decoupling, renormalization schemes using a number of ob-
servables equal to the number of free parameters may be
difficult to implement in practice as one has to solve for the
running parameters a larger set of equations than (41) in
the SM, and the resulting analytical formulae may be very
complicated and unmanageable.
In the fits to the electroweak data, breakdown of

explicit Appelquist–Carrazzone decoupling in a scheme
chosen to compute the observables may even incorrectly
produce upper bounds on the additional heavy particles
(gauge bosons, Higgs scalars).
In this paper we propose to organize loop calculations

into a hybrid scheme in which the parameters ĝ2, ĝy and
v̂H are expressed in terms of αEM, GF and MZ0 (or MW )

as in the SM and the remaining parameters are kept in the
calculations as the MS scheme running parameters. The
renormalization scale µ for them can be chosen arbitrarily.
As we will show by explicit calculations in the SU(2)L×

U(1)Y ×U(1)E model, the advantage of such a hybrid
scheme6 is twofold: the Appelquist–Carrazzone decoupling
of heavy particle effects is made manifest – for heavy par-
ticle masses taken to infinity the expressions for the ob-
servables measured at energies of the order of the elec-
troweak scale (or lower) coincide with the SM expression
due to the presence of explicit suppression by a large mass
scale (in the SU(2)L×U(1)Y ×U(1)E model by factors of

1/v2S). Moreover, an explicit renormalization scale depen-
dence remains only in the terms suppressed by the large
mass scale(s). The expressions for observables are in fact
scale independent when the RG running of the parameters
is taken into account. Tadpoles play a crucial role here [17].
Last but not least, our scheme does not require solving
for running parameters a complicated set of equations; in
this respect it is as practical in use as the usual schemes in
the SM.
Extensions of the SM are constrained by precision elec-

troweak observables. In our scheme observables are calcu-
lated in terms of αEM, GF andMZ orMW (because in the

SU(2)L×U(1)Y ×U(1)E model the tree-level formula (19)
for the Z0 mass is complicated it is much more convenient
to take as the three input observables αEM, GF and M

2
W

and compute instead M2
Z0
in terms of these) and the ad-

ditional parameters of the model at a conveniently chosen
renormalization scale µ. Fits to the data can then give con-
straints on these running parameters.Moreover, in theories
in which the Appelquist–Carrazzone decoupling holds, be-
cause the loop corrections reduce to their SM form as the
heavy mass scale is sent to infinity, a fairly accurate esti-
mate of the limits imposed by the precision data on the

6 In fact, such a hybrid scheme is adopted for the usual treat-
ment of the strong interaction corrections to the electroweak
observables: α̂s(µ) is not traded for any observable quantity; in-
stead one relies on the fact that the explicit µ dependence of the
two-loop contributions should cancel against the µ dependence
of α̂s(µ) in one-loop terms.

additional parameters of the model is possible by combin-
ing the SM loop corrections with the tree-level corrections
due to “new physics”.
The one-loop expressions for the chosen basic input ob-

servables read (see Appendix B for details):

α̂=
αEM

1+ ˆ̃Πγ(0)− (α̂/π) ln
M̂2
W
µ2

≈ αEM

(
1− ˆ̃Πγ(0)+

αEM

π
ln
M2W
µ2

)

M̂2W =M
2
W

(
1−
Π̂WW (M

2
W )

M2W

)
(45)

v̂2H =
1

√
2GF
(1+∆G) ,

with∆G given in (B.4) and

ŝ2 =
παEM√
2GFM2W

(1+∆)≡ s2(0)+ s
2
(0)∆,

ĉ2 =

√
2GFM

2
W −παEM(1+∆)√
2GFM2W

≡ c2(0)− s
2
(0)∆,

(46)

where

∆=− ˆ̃Πγ(0)+
α̂

π
ln
M̂2W
µ2
+
Π̂WW (M

2
W )

M2W
+∆G (47)

(as usual ˆ̃Πγ(q
2) is defined by Π̂γγ(q

2) = q2 ˆ̃Πγ(q
2), i.e. it

is the residue of the photon propagator).
Using this scheme we will explicitly demonstrate that

in the SU(2)L×U(1)Y ×U(1)E extension of the SM the
Appelquist–Carrazzone decoupling does hold. To this end
we will compute in our scheme the two different ρ pa-
rameters defined as in Sect. 3 in terms of the following
observables: ρlow, defined by the effective Lagrangian for

νµe
− elastic scattering, and ρ ≡M2W/M

2
Z(1− sin

2 θ�eff),

where sin2 θ�eff parametrizes the effective coupling of an

on-shell Z0 to an l+l− pair. In particular we will demon-
strate that the celebratedm2t/M

2
W term is present in both

cases.

5 Decoupling of Z� effects in ρlow at one loop

As an exercise, in order to demonstrate the working of
our renormalization scheme, we will compute one-loop cor-
rections to the low energy parameter ρlow defined by the
νµe

−→ νµe− elastic scattering. Since ρlow = 1 at the tree
level is a natural relation in the SU(2)×U(1)Y ×U(1)E
model, the one-loop corrections to ρlow should be finite
when 1/v2H in (29) is expressed in terms of GF with one-
loop accuracy.
At one loop the direct generation number dependent

fermion contribution comes through the “oblique” correc-
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tions to aeνLL−a
eν
RL:

(aeνLL−a
eν
RL)1-loop = c

Z0

νLa
Z0

e

1

M2
Z0

ΠZ0Z0(0)

M2
Z0

+ cZ
′

νLa
Z′

e

1

M2
Z′

ΠZ′Z′(0)

M2
Z′

+ cZ
′

νLa
Z0

e

1

M2
Z0

ΠZ0Z′(0)

M2
Z′

+ cZ
0

νLa
Z′

e

1

M2
Z0

ΠZ0Z′(0)

M2
Z′

, (48)

where Zi denotes Z
0 or Z ′, a

Zi
f = c

Zi
fL− c

Zi
fR, and the cou-

plings cZ
0

fL,R, (c
Z′

fL,R) of Z
0 (Z ′) to left- and right-chiral lep-

tons are defined by (20) and (21). The self-energies ΠZiZj
contain in principle also tadpole contributions. Another
generation-number dependent contribution to ρ arises
from Π̂WW (0)/M̂

2
W after expressing 1/v̂

2
H in the tree-level

term (29) with one-loop accuracy

(aeνLL−a
eν
RL)tree =

1

v̂2H
=
√
2GF(1−∆G) , (49)

with ∆G given by (B.4).

Fermionic contribution to ρlow

The top–bottom quark contribution to the one-particle ir-
reducible part of Π̂WW is the same as in the SM:

Π̂WW (0) =
ê2

ŝ2
Nc

[
2Ã(0,mt,mb)−

1

2
(m2t +m

2
b)

× b0(0,mt,mb)

]
, (50)

whereNc = 3. The one-particle irreducible part of Π̂ZiZj (0)
can be simplified to

Π̂ZiZj (0) =−2a
Zi
t a

Zj
t Ncm

2
t b0(0,mt,mt)

−2aZib a
Zj
b Ncm

2
bb0(0,mb,mb) .

Contributions of the other fermions can be written analo-
gously. When inserted into (48) the fermion f contribution

to Π̂ZiZj (0) factorizes as

(aeνLL−a
eν
RL)

(f)
1-loop =−

(
aZ
0

e a
Z0

f

M2
Z0

+
aZ
′

e a
Z′

f

M2
Z′

)

×

(
cZ
0

νLa
Z0

f

M2
Z0

+
cZ
′

νLa
Z′

f

M2
Z′

)

×2m2fNc b0(0,mf ,mf ) ,

and computing the factors in brackets using (20) and
(21) and the formulae (A.2) and (A.3) one finds (omitting

1/16π2)

(aeνLL−a
eν
RL)

t,b
1-loop =

2

v4H
m2tNc ln

m2t
µ2

×

[
1−
v2H
v2S

(el+ eec− eH)(eq+ euc+ eH)

e2S

]

×

[
1+
v2H
v2S

(el+ eH)(eq+ euc+ eH)

e2S

]

+
2

v4H
m2bNc ln

m2b
µ2

×

[
1+
v2H
v2S

(el+ eec− eH)(eq+ edc− eH)

e2S

]

×

[
1−
v2H
v2S

(el+ eH)(eq+ edc− eH)

e2S

]
.

The first terms in square brackets reproduce the SM con-
tribution. The other terms are simply zero due to the
relations (22). Combining this with the top–bottom con-
tribution to Π̂WW (0) in (49) one finds that the fermionic
“oblique” contribution to ρlow is finite and exactly repro-
duces the one-loop SM result

∆ρlow =
Nc

16π2

√
2GFg(mt,mb)+ . . .=

Nc

16π2

√
2GFm

2
t + . . .

(51)

(the function g(m1,m2) is defined in Appendix E). Thus,
we explicitly demonstrate that in the SU(2)L×U(1)Y ×
U(1)E model the celebrated ∝m2t contribution is present
in the ρ parameter defined in terms of low energy neutrino
processes.

Bosonic contribution ρlow

The circumstance simplifying calculation of the vertex and
self-energy corrections to external lines to the νµe

−→
νµe

− amplitude is that (due to the corresponding U(1)
Ward identities) the corrections to the vertices due to the
virtual Z0 and Z ′ are exactly canceled by the virtual Z0

and Z ′ contributions to the self-energies. For the correc-
tions due to the virtualW one finds

16π2 (aeνLL)
vert
1-loop =

[
cZ
0

eL

1

M2
Z0

(
ê3
ĉ

ŝ3
c′
)

+cZ
′

eL

1

M2
Z′

(
−ê3

ĉ

ŝ3
s′
)

+cZ
0

νL

1

M2
Z0

(
−ê3

ĉ

ŝ3
c′
)
+ cZ

′

νL

1

M2
Z′

×

(
ê3
ĉ

ŝ3
s′
)](

ηdiv+ln
M̂2W
µ2

)
,

(52)
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16π2 (aeνRL)
vert
1-loop =

[
cZ
0

eR

1

M2
Z0

(
ê3
ĉ

ŝ3
c′
)

+cZ
′

eR

1

M2
Z′

(
−iê3

ĉ

ŝ3
s′
)]

×

(
ηdiv+ln

M̂2W
µ2

)
, (53)

and, after using the relations (A.2) and (A.3),

16π2 (aeνLL−a
eν
RL)

vert
1- loop =−

4

v̂2H
ê2
ĉ2

ŝ2

×

[
1+
1

2

v̂2H
v̂2S

2e2H− eHeec

e2S

](
ηdiv+ln

M̂2W
µ2

)
.

(54)

Using (A.2), (A.3) and the results for Π̂γZ0(0) and Π̂γZ′(0)
which can be extracted from Appendix B.1, one can also
check that the “oblique” corrections to the νµe→ νµe scat-
tering amplitude potentially singular at zero momentum
transfer cancel against the singular contribution of the
photon exchange between the tree level eeγ and one-loop
ννγ vertices as in the SM [16].
The bosonic contribution to (48) can be calculated

using the formulae collected in AppendixD. The structure
of the W+W−, G±W∓, G+G−, G0h0 and G′S0 contri-
bution to ΠZiZj is such that they can be written in the
form

Π
(k)
ZiZj
(q2) = α

(k)
Zi
α
(k)
Zj
Π(k)(q2) , (55)

which, when used in the eν→ eν amplitude, leads to the
factorization observed already for the fermionic contribu-
tion:

aeνLL =

(
cZ
0

νLα
(k)

Z0

M2
Z0

+
cZ
′

νLα
(k)
Z′

M2
Z′

)

×

(
cZ
0

eLα
(k)

Z0

M2
Z0

+
cZ
′

eLα
(k)
Z′

M2
Z′

)
Π(k)(q2) , (56)

and similarly for aeνRL. This allows one to easily calculate
the divergent part of the corresponding contributions to
aeνLL−a

eν
RL (of these only W

+W− and G±W∓ are diver-
gent). Using the tricks (A.2), (A.3) and (22) it is

1

v̂2H
2ê2
ĉ4

ŝ2

[
1+
v2H
v2S

eH(eH+ el)

e2S

]

−
ê2

v̂2H

(
2ŝ2−2ĉ2

v2H
v2S

eH(eH + el)

e2S

)
ηdiv . (57)

The divergences of the Z0h0 and Z ′h0 loop contributions
to ΠZiZj can be combined to yield

[
ΠZiZj

]

div
= αZiαZj

(
ê2

ŝ2ĉ2
+4e2Hg

2
E

)
v̂2H
4
ηdiv ,

with αZ0 = −
ê
ŝĉ
c′+2eHgEs

′ and αZ′ =
ê
ŝĉ
c′+2eHgEs

′.

The corresponding divergent contributions to aeνLL−a
eν
RL is

then

−
1

v̂2H

(
ê2

ŝ2ĉ2
+4e2Hg

2
E

)
ηdiv . (58)

The other “oblique” bosonic contributions are finite. It is
also easy to check that the tadpole contributions to the vec-
tor boson self-energies cancel in the difference aeνLL−a

eν
RL.

Finally we record for completeness the finite contribu-
tions of the box diagrams to the coefficients aνeLL and a

νe
LR of

the low energy Lagrangian (25). We find

16π2aνeLL =
1

M2
Z0

3
(
cZ
0

νL

)2 (
cZ
0

eL

)2
+
1

M2
Z′
3
(
cZ
′

νL

)2 (
cZ
′

eL

)2

+
1

M2
Z′
−M2

Z0

ln

(
M2Z′

M2
Z0

)
6 cZ

0

νLc
Z′

νLc
Z0

eL c
Z′

eL

+
ê4

ŝ4M2W
, (59)

16π2aνeLR =−
1

M2
Z0

3
(
cZ
0

νL

)2(
cZ
0

eR

)2
−
1

M2
Z′
3
(
cZ
′

νL

)2(
cZ
′

eR

)2

−
1

M2
Z′
−M2

Z0

ln

(
M2Z′

M2
Z0

)
6cZ

0

νLc
Z′

νLc
Z0

eRc
Z′

eR .

From these formulae the box contribution to ρlow can be
easily obtained.
Combining the results (54), (57) and (58) with the di-

vergent part of ∆G in (49) given by (B.5) and (D.2), one
easily finds that the total one-loop contribution to the ρlow
parameter defined in terms of the νe→ νe scattering am-
plitude is finite and, since the coefficient of ln(1/µ2) is the
same as that of ηdiv, is independent of the renormalization
scale. Moreover, it is easy to see that in the limit vS →∞
one recovers the SM result, i.e. the Appelquist–Carrazzone
decoupling is manifest.
If sin2 θeff� is used as an additional observable, the ex-

plicit decoupling is lost. This is because one has then to
express gE and vS in the one-loop contribution through
MZ′ and sin

2 θeff� (to zeroth-order accuracy) with the effect
already described: the explicit suppression factor ∝ 1/v2S
is then replaced by the difference of sin2 θeff� − s

2
(0) which is

finite and does not vanish as vS →∞.

6 One-loop calculation ofM2
Z0

In this section we compute M2
Z0
in our scheme. Unlike

the previous example of ρlow, the tree-level formula for
M2
Z0
does depend on the parameters of the extended gauge

sector. Therefore, in the one-loop result for M2
Z0
in our

scheme, the explicit dependence on the renormalization
scale µ will remain. We will however show that the condi-
tions for the heavy Z ′ effects to decouple are satisfied: the
part of the result which does not vanish as vS →∞ is inde-
pendent of µ and takes the SM form. Furthermore, we will
show that the whole result for M2

Z0
is independent of the
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renormalization scale if the dependence on µ of the param-
eters in the zeroth-order expression is taken into account.
This constitutes a non-trivial check of the renormaliza-
tion group equations (13)–(15) and of our renormalization
scheme.
We calculate now the one-loop corrections to the Z0 bo-

son mass. It is given by the formula7

M2Z0 = M̂
2
Z0+ΠZ0Z0

(
M2Z0

)
,

where the tree-level term M̂2
Z0
is given by (19). The run-

ning parameters ê, ŝ, ĉ and v̂H in M̂
2
Z0
have to be expressed

in terms of the input observables GF, M
2
W and αEM with

one-loop accuracy by using the relations (45) and (46).

This gives

A0+ δA=
M2W
c2(0)

{
1−
Π̂WW (M

2
W )

M2W
+
s2(0)

c2(0)
∆

}
,

B0+ δB = g
2
Ee
2
Sv
2
S+
g2Ee

2
H√
2GF

(1+∆G) , (60)

D0+ δD=−
1

2
eHgE

e(0)

s(0)c(0)
√
2GF

×

{
1+
1

2

s2(0)

c2(0)
∆−

1

2

Π̂WW (M
2
W )

M2W
+
1

2
∆G

}
,

where e(0) ≡
√
4παEM and ∆ and ∆G are given by (47)

and (B.4), respectively. In agreement with the prescrip-

tion (44) we then have 2M2
Z0
= 2(M2

Z0
)(0)+2δM

2
Z0
, where

(M2
Z0
)(0) is given by (19) with A, B andD replaced by A0,

B0 andD0, respectively, and

2δM2Z0 = δA+ δB−
(A0−B0)(δA− δB)+4D0δD√

(A0−B0)2+4D20
+2 Π̂Z0Z0(M

2
Z)

=
M2W
c2(0)

[
−
Π̂WW (M

2
W )

M2W
+
s2(0)

c2(0)
∆

]
+2Π̂Z0Z0(M

2
Z)

+

g2Ee
2
Sv
2
S+

g2Ee
2
H√

2GF
−
M2W
c2
(0)

√
. . .

×

{
M2W
c2(0)

[
−
Π̂WW (M

2
W )

M2W
+
s2(0)

c2(0)
∆

]
−
g2Ee

2
H√
2GF
∆G

}

+
g2Ee

2
H√
2GF
∆G−

g2Ee
2
H

√
. . .

e2(0)

2G2Fs
2
(0)c

2
(0)

×

{
1

2

s2(0)

c2(0)
∆−

1

2

Π̂WW (M
2
W )

M2W
+
1

2
∆G

}
, (61)

where the self-energies Π̂WW and Π̂Z0Z0 include the tad-
pole contributions. We would like now to demonstrate that
i) in the limit vS →∞ the SM result is recovered, and ii)
that the above result is independent of the renormalization
scale µ.

7 Mixing of Z0 with Z′ is formally a two-loop effect.

6.1 SM limit and decoupling of the heavy Z� effects

For vS →∞ the tree-level term (M2Z0)(0) obviously gives
the SM result M2W/c

2
(0). Moreover, the prefactor in the

third line of (61) is then 1+O(1/v4S) and the prefactor of
the last term is also suppressed by 1/v2S. Thus in the limit
one recovers superficially the SM formula. We have

2δM2Z0 → 2
M2W
c2(0)

[
−
Π̂WW (M

2
W )

M2W
+
s2(0)

c2(0)
∆

]

+2Π̂Z0Z0(M
2
Z) . (62)

However, one still has to check that the appropriate combi-
nations of Π̂WW , Π̂Z0Z0 and∆ do not contain terms which
would grow too fast as vS →∞, invalidating the argument.
In order to show that they do not, we first note that

the S0 tadpole TS0 which contributes only to Π̂Z0Z0 is sup-
pressed (as we show below, the h0 tadpoles cancel exactly
in the full formula (61), similarly as in the SM). Indeed,

the S0 coupling to Z0Z0 is proportional to s′2vS ∼ 1/v3S;
the S0 propagator is ∼ 1/v2S ; the S

0 coupling to Z ′Z ′ and
S0S0 pairs is proportional to vS , so that these particles
circulating in the tadpole loop give to TS0 contributions
∼ v3S . Hence, the S

0 tadpole contribution to Π̂Z0Z0 goes as
∼ (1/v3S)(1/v

2
S)(v

3
S)∼ 1/v

2
S.

Furthermore, ∆ approaches in this limit its SM form
due to cancellation of the leading terms for vS →∞ be-
tween Λ and ΣνL+ΣeL and between Π̂WW (M

2
W ) and

Π̂WW (0). Moreover,∆G+ Π̂WW (M
2
W )/M

2
W grows only as

ln(v2S), so the contribution of the last bracket in (61) van-
ishes for vS →∞. Thus, in this limit one indeed gets (62)
and it remains to check that the difference of the Z0 and
W± self-energies approaches the SM form.
For the fermionic contribution to (62) this is clear: for

Π̂WW (M
2
W ) it is exactly as in the SM, and that to Π̂Z0Z0

(M2
Z0
) is different, but the difference is only due to Z0 cou-

plings which, as it follows from (20) and (A.1), approach as
vS →∞ their SM form. In particular, this means that in
the SU(2)L×U(1)Y ×U(1)E model the celebrated contri-
bution∝m2t /M

2
W is present in theM

2
W ↔M

2
Z0
relation.

Bosonic contributions to Π̂WW (M
2
W ) and Π̂Z0Z0(M

2
Z0
)

individually contain terms which grow as vS →∞ (the last
term in the third line of (D.1) and the Z ′h0 contribution to
Π̂Z0Z0), but it is easy to check that they cancel out in (62),
and the difference Π̂WW (M

2
W )/M

2
W − Π̂Z0Z0(M

2
Z0
)/M2

Z0

approaches its SM form too.
Thus, we have demonstrated that in the limit vS →∞

the finite SM expression forMZ0 is recovered.

6.2 Renormalization scale µ independence
ofMZ0 at one loop

h0 tadpoles cancelation

As a first step we show that the h0 tadpoles Th0 drop out
of the formula (61). The contribution of Th0 to 2Π̂Z0Z0
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is

2Π̂h
0 tad
Z0Z0 = 2

[
ê2

4ŝ2ĉ2
−
ê

ŝĉ
eHgE c

′s′

−

(
ê2

4ŝ2ĉ2
− e2Hg

2
E

)
s′2
](
−2v̂H

Th0
M2
h0

)
.

(63)

With one-loop accuracy and using the formulae (A.1) this
can be rewritten as

[
M2W
c2(0)
−

(
M2W
c2(0)
−
g2Ee

2
H√
2GF

)
A0−B0
√
. . .

+
g2Ee

2
H√
2GF

−
e2(0)

s2(0)c
2
(0)2G

2
F

g2Ee
2
H

√
. . .

](
−
2

v̂H

Th0

M2
h0

)
. (64)

It is then clear that each term finds in (61) its counterpart

with −Π̂h
0 tad
WW /M̂2W = (2/v̂H)(Th0/M

2
h0
) and exactly the

same coefficient.

Contribution proportional to fermion masses squared

Next we consider contributions to M2
Z0
proportional

to the fermion masses squared. These are hidden in
Π̂Z0Z0 , Π̂WW (M

2
W ) and in Π̂WW (0). As usual, they can

be isolated by approximating the first two self-energies
by Π̂Z0Z0(0) and Π̂WW (0), respectively. From the for-
mula (D.3) we get

Π fermZ0Z0(q
2) =−2

∑

f

N (f)c

(
cZ
0

fL − c
Z0

fR

)2
m2f b0(0,mf ,mf ) .

(65)

Using the couplings (20) and the relations (22) and (A.1)
we can write

(
cZ
0

fL − c
Z0

fR

)2
=
1

2

{
ê2

4ŝ2ĉ2
+

(
ê2

4ŝ2ĉ2
− g2Ee

2
H

)

×
B−A
√
. . .
+ e2Hg

2
E−

ê2

ŝ2ĉ2
g2Ee

2
H v̂
2
H

√
. . .

}
.

(66)

This makes it clear that to each term in 2
[
Π̂ ferm
Z0Z0

]

mass

there is a corresponding term with Π̂WW in the for-
mula (61), so that the divergences proportional to the
fermion masses squared properly cancel. Hence, the terms
quadratic in the fermionmasses arising from “oblique” cor-
rections are finite (and, hence, µ-independent) just as they
are in the SM. For the one-loop top–bottom contribution
using (50) we get

M2Z0 =
1

2

(
A0+B0−

√
(A0−B0)2+4D20

)

−
(
cZ
0

fL − c
Z0

fR

)2 Nc
16π2

g(mt,mb)

+other contributions , (67)

and in the limit vS→∞ one recovers the SM relation (com-
puted using as input observablesMW , GF and αEM).

Remaining fermion contribution and the use
of RG equations

The remaining divergent fermionic contribution (D.3) to
ΠZ0Z0 is proportional to q

2:

2
[
Π fermZ0Z0(q

2)
]q2 part
div

=
4

3
q2
∑

f

N (f)c

×

[(
cZ
0

fL

)2
+
(
cZ
0

fR

)2]
ηdiv .

Using the couplings (20) and the relations (22) and (A.1)
the right hand side takes the form

2

3
M2Z0

{(
1−
A−B
√
. . .

)

×
ê2

4ŝ2ĉ2

[
2−4ŝ2+8ŝ4+Nc

(
2−4ŝ2+

40

9
ŝ4
)]

+
ê2

ĉ2
g2EeH v̂

2
H

√
. . .

×

[
2el−2eec+Nc

(
−
2

3
eq+

4

3
euc−

2

3
edc

)]

+

(
1+
A−B
√
. . .

)
g2E
[
2e2l + e

2
ec+Nc

(
2e2q+ e

2
uc+ e

2
dc

)]
}
ηdiv.

(68)

With one-loop accuracy the prefactor of the first line can
be transformed into

M2Z0

(
1−
A−B
√
. . .

)
=
M2W
c2(0)
+
B0−A0
√
. . .

M2W
c2(0)

−
1

2

e2Hg
2
E

√
. . .

e2(0)

s2(0)c
2
(0)

1

2G2F
,

after which different terms arising from the first line of (68)
combine with the appropriate fermionic contributions to

−
M2W
c2(0)

[
−
ΠWW (M

2
W )
q2 part

M2W
+
s2(0)

c2(0)
∆̃

]

div

,

in (61) canceling their divergences and the µ dependence
exactly as in the SM.
In our renormalization scheme (outlined in Sect. 4) the

two other divergent terms in (68) are cut off by the MS
procedure. In order to see thatM2

Z0
computed at one loop

is nevertheless independent of the renormalization scale µ,
we have to consider the dependence on µ of 2(M2

Z0
)(0):

(2M2Z0)(0) =A0+B0(µ)−
√
[A0−B0(µ)]

2
+4D20(µ) .

(69)

The superscripts 0 on A, B and D mean that the parame-
ters ê2, ŝ2, ĉ2 and v̂H have been expressed in terms of the
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basic observables αEM,MW and GF to zeroth-order accu-
racy. The µ dependence is due to the parameters eHgE ,
eSgE and vS , which are still the running parameters of the
full theory. Using the renormalization group equations (15)
and (C.5) for an infinitesimal change of scale µ we have

B0(µ) =B0(µ
′)+ δB1+ δB2+ δBv ,

4D20(µ) = 4D
2
0(µ

′)+4δD21+4δD
2
2 ,

where

δB1 =
1

√
2GF

2

×

⎛

⎝2
3

∑

f

eHgEefgEY
Y
H Y

Y
f +

1

3
2e2Hg

2
EY

Y
H Y

Y
H

⎞

⎠

× g2y ln
µ2

µ′2
,

δB2 =

(
1

√
2GF
e2Hg

2
E+ e

2
Sg
2
Ev
2
S

)

×

⎛

⎝2
3

∑

f

e2f g
2
E+
1

3
2e2Hg

2
E+
1

3
e2Sg

2
E

⎞

⎠ ln µ
2

µ′2
,

δBv = e
2
Sg
2
E

(
−
3

2
λSv

2
S+3e

2
Sg
2
Ev
2
S

−12
g4Ee

4
Sv
2
S+ g

4
Ee
2
Se
2
Hv
2
H

λS

)
ln
µ2

µ′2
,

4δD21 =
e2(0)

s2(0)c
2
(0)

1

2G2F
2

⎛

⎝2
3

∑

f

eHgEefgEY
Y
H Y

Y
f

+
1

3
2e2Hg

2
EY

Y
H Y

Y
H

)
g2y ln

µ2

µ′2
,

4δD22 =
e2(0)

s2(0)c
2
(0)

1

2G2F
e2Hg

2
E

×

⎛

⎝2
3

∑

f

e2f g
2
E+
1

3
2e2Hg

2
E+
1

3
e2Sg

2
E

⎞

⎠ ln µ
2

µ′2
.

(70)

The formula (69) then takes the form

(2M2Z0)(0) ≈A0+B0(µ
′)−

√
[A0−B0(µ′)]

2+4D20(µ
′)

+ (δB1+ δB2+ δBv)

(
1+
A0−B0
√
. . .

)

−
1

2
√
. . .

(
4δD21+4δD

2
2

)
. (71)

It is then a matter of some simple algebra to check that
the fermion generation number dependent terms in (70)
precisely match the ln(1/µ2) proportional terms associ-
ated with the two last lines of (68) changing in these
terms µ into µ′. Hence, up to one-loop accuracy the en-
tire fermionic contribution toM2

Z0
is renormalization scale

independent.

6.2.1 Renormalizations scale independence of the bosonic
contribution to M2

Z0

The scale independence of the remaining one-loop contri-
bution can be checked in a similar way (using judiciously
the relations collected in AppendixA): part of the diver-
gences with the associated µ dependence explicitly cancels
in (61) as a result of expressing ê2, ŝ2, ĉ2 and v̂H in terms
of the basic observables αEM, MW and GF with one-loop
accuracy. Other divergences are cut off by the MS prescrip-
tion and the explicit renormalization scale dependence is
compensated for by the change with µ dictated by the RG
of the parameters ekgE and vS in the zeroth-order term
(M2
Z0
)(0) (69). Here we only would like to show that the S

0

tadpole contribution to 2Π̂Z0Z0 plays a crucial role in the
working of the scheme [17].

The couplings of S0 to S0S0 and to G′G′, G0G0 can
easily be computed.8 For the S0 tadpole we then get

TS0 =
3

4
λSvSa(MS0)+

1

4
λSvS c̃

′2a(MG′)

+
1

4
λSvS s̃

′2a(MG0)+3g
2
Ee
2
SvS

×

[
c′2M2Z′

(
ln
M2Z′

µ2
−
1

3

)
+ s′2M2Z0

(
ln
M2
Z0

µ2
−
1

3

)]
,

where c̃′ and s̃′ are the mixing angles of G0 and G′. c̃′ and
s̃′ are different from c′ and s′, but still one has the usual
relations M2

G0
= ξM2

Z0
and M2G′ = ξM

2
Z′ . The S

0 mass is

M2
S0
= 12λSv

2
S . As usually we work in the Feynman gauge,

ξ = 1.
The S0 tadpole gives

2Π̂S
0 tad
Z0Z0 = 2 ·2g

2
Ee
2
SvS s

′2

(
−
TS0

M2
S0

)

=−4g2Ee
2
SvS

(
1+
A−B
√
. . .

)
1

λSv
2
S

×

{
3

4
λSvS

1

2
λSv

2
S+
1

4
λSvSg

2
Ee
2
Sv
2
S

+3g2Ee
2
SvS

(
g2Ee

2
Sv
2
S+ g

2
Ee
2
Hv
2
H

)}
ln
1

µ2
+ . . . ,

where we have used the relations s′2M2
Z0
+ c′2M2Z′ =

g2Ee
2
Sv
2
S+ g

2
Ee
2
Hv
2
H and s̃

′2M2
Z0
+ c̃′2M2Z′ = e

2
Sg
2
Ev
2
S .

From (2M2
Z0
)tree, see (69), we have instead

(2M2Z0)
tree ⊃

(
1+
A0−B0
√
. . .

)
δBv .

8 As explained in AppendixC, in order to simplify the for-
mulae we assume that at the scale we are working the scalar
potential is the sum V = VH(H)+VS(S). The physical Higgs
scalars S0 and h0 are then pure real parts of the singlet S and
of the neutral component of the doublet H. The S0 does not
couple then to h0h0.
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This explicitly shows that in the S0 tadpole contribution
the scale µ is properly replaced by µ′ in the terms∝ λS and
∝ (1/λS) (as we have checked, the λS independent terms in
TS0 combine with the bosonic contribution Π̂Z0Z0).
We have shown that in the one-loop expression for

M2
Z0
, consistent with the Appelquist–Carrazzone decou-

pling, the explicit renormalization scale dependence is only
in terms suppressed by inverse powers of vS . Moreover, the
whole expression is in fact renormalization scale indepen-
dent, if one takes into account the µ dependence of the RG
running of the parameters in the tree-level term.

7 On-shell Z0 couplings to fermions

In this section we briefly consider the parameter ρ defined
in terms of the physical Z0 andW± masses and the Wein-
berg angle:

ρ=
M2W

M2
Z0

(
1− sin2 θ�eff

) , (72)

where sin2 θ�eff is defined by the form (24) of the effective
coupling of the on-shellZ0 to the fermions (we take leptons
for definiteness):

LZ
0ff̄ on-shell
eff = ψ̄lγ

µ(FLPL+FRPR)ψlZ
0
µ . (73)

Comparison of (73) with (24) gives sin2 θ�eff = FR/2(FR−
FL). For the form factors FL,R we have the formulae

FL,R =−c
Z0

�L,R−
1

2
Π̂ ′Z0Z0

(
M2Z0

)
cZ
0

�L,R

+ ê
Π̂Z0γ

(
M2
Z0

)

M2
Z0

−
Π̂Z0Z′

(
M2
Z0

)

M2
Z0
−M2

Z′
cZ
′

�L,R+ . . .

(74)

Since we are interested only in the dominant univer-
sal top–bottom contribution, we have not written down
the genuine vertex corrections, nor the final fermion self
energies.
Expressing the running coupling constants in cZ

0

�L,R in
terms ofM2W , GF and αEM with one-loop accuracy we find

cZ
0

�R = e(0)
s(0)

c(0)

{
1−
1

2
ˆ̃Πγ(0)−

αEM

2π
ln
M2W
µ2
+
1

2c2(0)
∆

}
c′(0)

− e�cgEs
′
(0)+ e(0)

s(0)

c(0)
δc′− e�cgE δs

′ ,

cZ
0

�L =−
e(0)

2s(0)c(0)

{
1−
1

2
ˆ̃
Πγ(0)−

αEM

2π

× ln
M2W
µ2
+
s2(0)− c

2
(0)

2c2(0)
∆

}
c′(0)

+ e(0)
s(0)

c(0)

{
1−
1

2
ˆ̃Πγ(0)−

αEM

2π

× ln
M2W
µ2
+
1

2c2(0)
∆

}
c′(0)

+ e�gEs
′
(0)−

e(0)

2s(0)c(0)

(
1−2s2(0)

)
δc′+ e�gE δs

′ ,

(75)

where ∆ is given in (47). We have also introduced δc′ and
δs′ because the original c′ and s′ depend on ê, ŝ, ĉ and v̂2H .
The quantities c′(0) and s

′
(0) are then given by the same ex-

pressions as c′ and s′ but with ê, ŝ, ĉ and v̂2H replaced by
e(0), s(0), c(0) and 1/

√
2GF, respectively.

In our renormalization scheme the form factors FL,R
given by (74) and (75) are finite if the MS scheme is em-
ployed. Moreover their parts non-vanishing as vS →∞ are
renormalization scale independent (i.e. they are just finite)
and the explicit µ dependence of the one-loop terms is
compensated for by the change of the running parameters
eHgE , e�gE , e�cgE and vS entering the zeroth-order contri-
butions.
For δc′ and δs′ we find

δs′ =−
c′(0)

4s′(0)
δc′ =

1

4s′(0)

1

(
√
. . .)3

×
[
4D20(δA− δB)− (A0−B0)4D0δD

]

=
c′(0)

(
√
. . .)2

e(0)

2s(0)c(0)

eHe
2
Sg
3
Ev
2
S√

2GF

×

[
−
Π̂WW (0)

M2W

]
+ . . . , (76)

where in the second line, in order to isolate the dominant
top–bottom contributions to the form factors FL and FR,
we have isolated only the term with Π̂WW (0). Combining
this with

Π̂Z0Z′
(
M2Z0

)
≈ Π̂Z0Z′(0)

=−
∑

f

(cZ
0

fL − c
Z0

fR)(c
Z′

fL− c
Z′

fR)2N
(f)
c m

2
f

× b0(0,mf ,mf )

=−
1

(
√
. . .)

ê

2ŝĉ
eHe

2
Sg
3
Ev
2
S

×
∑

f

2N (f)c m
2
f b0(0,mf ,mf ) (77)

(where again we have used the results (20), (21) and (A.2))
and using the fact thatM2

Z0
−M2Z′ =−

√
. . . we find

F t,bL,R ≈−
1

(
√
. . .)2

ê

2ŝĉ
eHe

2
Sg
3
Ev
2
Sc
Z′

�L,R

Nc

16π2
g(mt,mb) .

(78)

Since (
√
. . .)2 ≡ (A0−B0)2+4D20 ∼ v

4
S as vS →∞, this

contribution is explicitly suppressed in this limit. It is easy
to see that the expressions for FL and FR, see (74) and (75),
do not involve any other contributions proportional to m2t
and m2b and, therefore, no contributions ∝m

2
t /M

2
W enter
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sin2 θ�eff at one loop.
9 Since we have already shown that for

vS →∞ one recovers also the SM expression forMZ0 , and
we conclude that in the U(1)Y ×U(1)E model

ρ=
M2W

M2
Z0

(
1− sin2 θ�eff

) = 1+ Nc
16π2

√
2GFg(mt,mb)

+O
(
m2t/v

2
S

)
+ . . . , (79)

where the dots stand for other SM contributions as well as
for other terms suppressed in the limit vS →∞ (also those
arising from the tree-level contribution contributon to ρ,
see (33)). Similar result can be proven also for ρZf defined
by the effective Lagrangian (24).
It should be stressed that unlike ρlow to which one-loop

corrections have been computed in Sect. 5, the parame-
ter ρ defined in (72) is not equal to unity at the tree level.
Therefore the one-loop result for ρ does depend on the
renormalization scheme and in particular on the chosen set
of input observables. This observation is helpful in under-
standing the apparent discrepancy of our results with the
claim of [5–7] that in models like the one considered here
the contribution to ρ proportonal to m2t /M

2
W is absent.

References [5–7] use sin2 θ�eff as one of the input observ-
ables and then, as we have commented earlier, the explicit
Appelquist–Carrazzone decoupling is lost. However, our
point is that the renormalization scheme can be chosen in
such a way that new physics effects can be treated as cor-
rections to the well established SM resuls.

8 Conclusions

In this paper we have discussed some technical aspects re-
lated to the U(1)E extension of the standard electroweak
theory. We have elucidated the correct treatment of the
additional coupling constants and presented the one-
loop renormalization group equations in a form adapted
to practical calculations. Furthermore we have proposed
a renormalization scheme employing as in the SM only
three input observables (for technical convenience we have
chosen to work withMW , GF and αEM instead of the cus-
tomary set MZ0 , GF and αEM) which has the virtue of
making the decoupling of heavy Z ′ effects manifest. To
demonstrate this we have computed the parameter ρ de-
fined either in terms of the low energy neutrino scattering
processes or in terms of physical M2W , M

2
Z0
and sin2 θleff

as measured in Z0→ l+l−. In addition, in both cases we
have shown explicitly in a renormalization scheme in which
the Appelquist–Carrazzone decoupling is manifest that the
∝ GFm2t contribution to the ρ parameters is present and
up to terms vanishing asMZ′ →∞ takes the form as in the
SM. Our calculation supports therefore similar an observa-
tion made in [9] a long time ago.
Our choice of MW , GF and αEM as input observables

instead of the commonly used set MZ , GF and αEM was

9 In the SM the form factors FL and FR do not receive any
such contribution if the scheme based onMW , GF and αEM as
input observables is employed.

dictated by the desire of demonstrating crucial aspects of
our renormalization scheme (in particular the role of the
renormalization group equations in proving scale indepen-
dence of the computed observables) analytically. We have
checked, however, that the explicit decoupling of heavy Z ′

effects (that the expressions for the electroweak observ-
ables approach their SM form for vS ∝MZ′ →∞), do not
depend on whether one usesMW orMZ .
The Appelquist–Carrazzone decoupling offers a possi-

bility of a systematic inclusion of all large logarithmic ∼
[ln(MZ′/MZ0)]

n corrections by taking into account the RG
running of theWilson coeffcients of non-renormalizable op-
erators generated by decoupling of the heavy Z ′ sector.
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Appendix A: Useful formulae

The mass matrix of Z0 and Z ′ which arises as a 2×2 sub-
matrix after rotating (16) by the angle θW reads

⎛

⎝
1
4

(
g2y+ g

2
2

)
v2H − 12

√
g2y+ g

2
2gEeHv

2
H

− 12

√
g2y+ g

2
2gEeHv

2
H e2Hg

2
Ev
2
H + e

2
Sg
2
Ev
2
S

⎞

⎠=
(
A D
D B

)
.

It is diagonalized by the rotation by the angle θ′ deter-
mined from (18). For s′2, c′2 and s′c′ one derives the follow-
ing useful expressions:

s′2 =
1

2

(
1+

A−B√
(A−B)2+4D2

)

=
1

4

g2y+ g
2
2

g2E

e2Hv
4
H

e4Sv
4
S

+ . . . ,

c′2 =
1

2

(
1−

A−B√
(A−B)2+4D2

)

= 1−
1

8

g2y+ g
2
2

g2E

e2Hv
4
H

e4Sv
4
S

+ . . . , (A.1)

s′c′ =
−D√

(A−B)2+4D2
=
1

2

√
g2y+ g

2
2

gE

eHv
2
H

e2Sv
2
S

+ . . .

Other useful expressions are

s′2

M2
Z0

+
c′2

M2
Z′
=

1

M2
Z0
M2
Z′

(
e2

4s2c2
v2H

)

c′2

M2
Z0

+
s′2

M2
Z′
=

1

M2
Z0
M2
Z′

(
g2Ee

2
Hv
2
H+ g

2
Ee
2
Sv
2
S

)

s′c′

(
1

M2
Z0

−
1

M2
Z′

)
=

1

M2
Z0
M2
Z′

( e
2sc
gEeHv

2
H

)
(A.2)
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and

M2Z0M
2
Z′ =

e2

4s2c2
g2Ee

2
Sv
2
Hv
2
S . (A.3)

Still other useful relations are

c′2M2Z0 =Ac
′2+Ds′c′ ,

s′2M2Z0 =Bs
′2+Ds′c′ ,

c′2M2Z′ =Bc
′2−Ds′c′ , (A.4)

s′2M2Z′ =As
′2−Ds′c′ .

Appendix B: Calculation of the input
observables αEM, GF andMW

Here we outline the calculation in the SU(2)L×U(1)Y ×
U(1)E model of the basic input observables αEM, GF and
MW . The formula forMW is simple:

M2W =
ê2

4ŝ2
v̂2H+ Π̂WW

(
M2W

)
, (B.1)

where Π̂WW (M
2
W ) includes in principle also the tadpole

contribution. Expressions for αEM and GF are derived
below.

B.1 Calculation of δαEM

This is most easily computed using the effective La-
grangian technique [16]. Below the electroweak scale (the
renormalizable part of) the effective Lagrangian for elec-
tromagnetic interactions has the form

L=−
1

4
(1+ δzγ)fµνf

µν

+
(
1+ δzL2

)
ψ̄ei �∂ PLψe

−

(
e+ δe+ ê δzL2 +

1

2
êδzγ

)
ψ̄e qe �A PLψe (B.2)

+
(
1+ δzR2

)
ψ̄ei �∂ PRψe

−

(
ê+ δe+ ê δzR2 +

1

2
ê δzγ

)
ψ̄e qe �A PRψe

+counterterms .

ê+ δe is the electromagnetic coupling of QED at the scale
just below the Fermi scale threshold; it can easily be re-
lated to αEM via the RG running.
The factors δzL2 and δz

R
2 are such that they reproduce

at the tree level contributions of virtual W , Z0 and Z ′ to
the electron self-energies (computed at zero momentum).
Similarly,

δzγ =−[Π̃γ(0)]W,G+,f (B.3)

reproduces at the tree level the vacuum polarization due to
decoupled heavy particlesW± and top quark.

Fig. 2. Corrections to the photon–electron vertex in a model
with extra U(1). The external line momenta can be off-shell but
must be�MZ

The vertex corrections determining the combinations
δe+ ê δzL,R2 + 12 ê δzγ are shown in Fig. 2. Owing to the

U(1)Y and U(1)E Ward identities the Z
0 and Z ′ contribu-

tions to δe are exactly canceled by the Z0 and Z ′ contri-
butions to δzL2 and δz

R
2 , respectively. The second diagram

in Fig. 2 is exactly as in the SM and combines with theW
contribution to δzL2 . As a result from the photon coupling
to left-chiral electrons one gets

δe=
1

2
ê Π̃γ(0)+ c

Z0

eL

Π̂γZ0(0)

M2
Z0

+ cZ
′

eL

Π̂γZ′(0)

M2
Z′

−
ê3

16π2ŝ2

(
ηdiv+ln

M̂2W
µ2

)
.

The self-energies Π̂γZ0(0) and Π̂γZ′(0) receive contribu-
tions only from the virtualW+W− and W±G∓ pairs. We
get

δe=
1

2
ê Π̃γ(0)−

1

16π2
ê3

ŝ2

(
ηdiv+ln

M̂2W
µ2

)

+
1

16π2
2cZ

0

eL

[
−ê2
ĉ

ŝ
c′− ê

(
ê
ŝ

ĉ
c′−2eHgEs

′

)]

×
M̂2W
M2
Z0

ln
M̂2W
µ2
+
1

16π2
2cZ

′

eL

×

[
ê2
ĉ

ŝ
s′+ ê

(
ê
ŝ

ĉ
s′+2eHgEc

′

)]
M̂2W
M2
Z′
ln
M̂2W
µ2
.

By using (A.2) and (A.3) this can be reduced to

δe=
1

2
ê Π̃γ(0)−

ê3

8π2

(
ηdiv+ln

M̂2W
µ2

)
,

which (as could be expected) is the same as in the SM. The
same result is obtained by considering the photon coupling
to a right-chiral electron.

B.2 Calculation of δGF

Calculation of δGF proceeds as in the SM. The only mod-
ification is that there are additional box diagrams with Z ′

and in addition theW boson self-energy ΠWW (q
2) as well

as the self-energies of external line fermions are modified by
the presence of Z ′ (there are contributions from the virtual
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Z ′ and the couplings of Z0 are modified). Still the formula
takes the form

GF =
1

√
2v̂2H
(1+∆G) =

ê2

4
√
2ŝ2M̂2W

(1+∆G) ,

with ∆G given by (B.4):

∆G =−
Π̂WW (0)

M̂2W
+BWγ+BWZ0

+BWZ′ +2Λ̂+ Σ̂eL+ Σ̂νL . (B.4)

Here BWγ is the contribution (in units of the tree levelW
exchange) of theWγ box with a subtracted contribution of
the photonic vertex correction to the tree-level diagram in
the low energy effective four-Fermi theory of µ− decay:

BWγ =
ê2

16π2

(
ηdiv+

1

2
+ ln

M2W
µ2

)

(this contribution is the same as in the SM), andBWZ0 and
BWZ′ denote the contributions of the box diagrams with
WZ0 andWZ ′, respectively:

BWZ0 =
1

16π2

[(
cZ
0

eL

)2
+
(
cZ
0

νL

)2
−8 cZ

0

eL c
Z0

νL

]

×
M2W

M2W −M
2
Z0

ln
M2W
M2
Z0

,

and BWZ′ is given by a similar expression with c
Z0

e,νL→

cZ
′

e,νL andM
2
Z0
→M2Z′ .

For the contributions Λ̂(i) of individual diagrams to the
vertex corrections Λ̂= (1/16π2)

∑
i Λ̂
(i) one finds

Λ̂Z
0eν =−cZ

0

eL c
Z0

νL

(
ηdiv+

1

2
+ ln

M̂2
Z0

µ2

)
,

Λ̂Z
′eν =−cZ

′

eLc
Z′

νL

(
ηdiv+

1

2
+ ln

M̂2Z′

µ2

)
,

Λ̂νWZ
0
=−3cZ

0

νL

(
ê
ĉ

ŝ
c′
)

×

(
ηdiv−

5

6
+ ln

M̂2W
µ2
+

M̂2
Z0

M̂2
Z0
− M̂2W

ln
M̂2
Z0

M̂2W

)
,

Λ̂νWZ
′
=−3cZ

′

νL

(
−ê
ĉ

ŝ
s′
)

×

(
ηdiv−

5

6
+ ln

M̂2W
µ2
+

M̂2Z′

M̂2
Z′
− M̂2W

ln
M̂2Z′

M̂2W

)
,

Λ̂eZ
0W = 3cZ

0

eL

(
ê
ĉ

ŝ
c′
)

×

(
ηdiv−

5

6
+ ln

M̂2W
µ2
+

M̂2
Z0

M̂2
Z0
− M̂2W

ln
M̂2
Z0

M̂2W

)
,

Λ̂eZ
′W = 3cZ

′

eL

(
−ê
ĉ

ŝ
s′
)

×

(
ηdiv−

5

6
+ ln

M̂2W
µ2
+

M̂2Z′

M̂2
Z′
− M̂2W

ln
M̂2Z′

M̂2W

)
,

Λ̂eγW =−3ê2
(
ηdiv−

5

6
+ ln

M̂2W
µ2

)
,

so that the divergent part of Λ̂ is

Λ̂div =
1

16π2

(
ê2
1−2ŝ2−12c2

4ŝ2ĉ2
− e2l g

2
E

)
ηdiv .

Finally, for the self-energies Σ̂νL and Σ̂eL of the left-
chiral electron and neutrino, respectively, one gets

16π2Σ̂νL =
ê2

2ŝ2

(
ηdiv+

1

2
+ ln

M̂2W
µ2

)

+
(
cZ
0

νL

)2
(
ηdiv+

1

2
+ ln

M̂2
Z0

µ2

)

+
(
cZ
′

νL

)2
(
ηdiv+

1

2
+ ln

M̂2Z′

µ2

)
,

16π2Σ̂eL =
ê2

2ŝ2

(
ηdiv+

1

2
+ ln

M̂2W
µ2

)

+
(
cZ
0

eL

)2
(
ηdiv+

1

2
+ ln

M̂2
Z0

µ2

)

+
(
cZ
′

eL

)2
(
ηdiv+

1

2
+ ln

M̂2Z′

µ2

)
,

with the divergent part
(
Σ̂νL+ Σ̂eL

)

div
=
1

16π2

×

(
ê2

ŝ2
+
ê2

4ŝ2ĉ2
[1+ (1−2ŝ2)2]+2e2l g

2
E

)
ηdiv .

Collecting all divergent parts, we get for the box, vertex
and self-energy corrections exactly the same divergent part
as in the SM

(
Bboxes+2Λ̂+ Σ̂eL+ Σ̂νL

)

div
=−

ê2

16π2
4

ŝ2
ηdiv .

(B.5)

Appendix C: RG equation for vS

Themost general scalar field potential in the model consid-
ered in this paper is

V =m2SS
�S+

λS

4
(S�S)2+m2HH

†H+
λH

4
(H†H)2

+κ(S�S)(H†H) .

In order to simplify the formulae we have assumed that at
one particular renormalization scale µ, at which we chose
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to work, κ(µ) = 0. However, to derive the renormalization
group equation for vS one has to keep κ. With

S =
1
√
2
(vS+S

0+iGS) , H =
1
√
2

( √
2G+

vH+h
0+iGH

)

(C.1)

(where h0 and S0 are the physical Higgs scalars and GH
and GS are the fields whose appropriate linear combina-
tions G0 and G′ become the longitudinal components of
the massive Z0 and Z ′), the formulae determining v2S and
v2H read

m2H +
1

4
λHv

2
H +
1

2
κv2S = 0 ,

m2S+
1

4
λSv

2
S+
1

2
κv2H = 0 . (C.2)

Differentiating the second one with respect to µ we get at
κ= 0

µ
dv2S
dµ
=−

4

λS

(
µ
dm2S
dµ
+
1

4
v2S µ

dλS
dµ
+
1

2
v2H µ

dκ

dµ

)
.

(C.3)

Thus, to find the derivative of v2S at the scale µ, such that
κ(µ) = 0 we need to get also dκ/dt. Calculating derivatives
appearing in the right hand side of (C.3) is standard:

µ
d

dµ
λS = 2ελS+5λ

2
S−12λSg

2
Ee
2
S+24g

4
Ee
4
S ,

µ
d

dµ
m2S =m

2
S

(
2λS−6g

2
Ee
2
S

)
, (C.4)

µ
d

dµ
κ= 12g4Ee

2
Se
2
H .

Using these results and (C.3) it is easy to derive

µ
d

dµ
v2S = v

2
S

(
−3λS+6g

2
Ee
2
S

)
−24

g4Ee
4
Sv
2
S+ g

4
Ee
2
Se
2
Hv
2
H

λS
.

(C.5)

Appendix D: Vector boson self-energies

The fermionic one-loop contribution toΠWW (q
2) in SU(2)

×U(1)E×U(1)Y is as in the SM. For the bosonic part of
ΠWW (q

2) we have

−
ê2

ŝ2
Ã
(
q2, M̂W , M̂h0

)
−
ê2

ŝ2
Ã
(
q2, M̂W , M̂Z0
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ŝ2
M̂2W b0

(
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+
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−ê
ŝ

ĉ
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+
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ŝ
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ŝ2
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2
[
8Ã
(
q2, M̂W , M̂Z0

)
+
(
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2
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)
−
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]

− ê2
ĉ2

ŝ2
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[
8Ã
(
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(
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(
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3
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− ê2
[
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(
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(
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)
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(
q2, M̂W , 0
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−
2

3
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16π2

]
. (D.1)

The divergent part of this contribution taken at q2 = 0 is

16π2[Π̂WW (0)]
bos
div =

(
ê2
ŝ2− ĉ2

ŝ2ĉ2
M̂2W +4e

2
Hg
2
EM̂

2
W

)
ηdiv

(D.2)

(we have used c′
2
M̂2
Z0
+ s′

2
M̂2Z′ = M̂

2
W/ĉ

2). It differs from
the SM only by the last term.
Below we list all bosonic contributions toΠZ1Z2(q

2) for
Z1Z2 = Z

0Z0, Z ′Z ′, Z0Z ′:

W+W− :−ê2
ĉ2

ŝ2

[
8Ã
(
q2, M̂W , M̂W

)
+
(
4q2+2M̂2W

)

× b0
(
q2, M̂W , M̂W

)
−
2

3

q2

16π2

]
×

⎛

⎝
c′2

s′2

−c′s′

⎞

⎠ ,

G±W∓ : +2M̂2W b0
(
q2, M̂W , M̂W

)

×

⎛

⎜⎝

(
−ê ŝ
ĉ
c′+2eHgEs

′
)2

(
ê ŝ
ĉ
s′+2eHgEc

′
)2

(
−ê ŝ
ĉ
c′+2eHgEs

′
) (
ê ŝ
ĉ
s′+2eHgEc

′
)

⎞

⎟⎠ ,

G+G− :−Ã
(
q2, M̂W , M̂W

)

×

⎛

⎜⎜⎜⎝

(
ê ĉ
2−ŝ2

ŝĉ
c′+2eHgEs

′
)2

(
−ê ĉ

2−ŝ2

ŝĉ s
′+2eHgEc

′
)2

(
ê ĉ
2−ŝ2

ŝĉ
c′+2eHgEs

′
)(
−ê ĉ

2−ŝ2

ŝĉ
s′+2eHgEc

′
)

⎞

⎟⎟⎟⎠ ,

G0h0 :−Ã
(
q2, M̂Z0 , M̂h0

)

×

⎛

⎜⎝

(
ê
ŝĉ
c′−2eHgEs′

)2
(
ê
ŝĉ
s′+2eHgEc

′
)2

(
− êŝĉc

′+2eHgEs
′
) (
ê
ŝĉs
′+2eHgEc

′
)

⎞

⎟⎠ ,

G′S0 :−4Ã
(
q2, M̂Z′ , M̂S0

)
×

⎛

⎝
e2Sg

2
Es
′2

e2Sg
2
Ec
′2

e2Sg
2
Ec
′s′

⎞

⎠ ,

Z0h0 : +
1

4
v̂2Hb0

(
q2, M̂Z0 , M̂h0

)

×

⎛

⎜⎝

(
− ê
ŝĉ
c′+2eHgEs

′
)4

(
− ê
ŝĉ
c′+2eHgEs

′
)2 ( ê

ŝĉ
s′+2eHgEc

′
)2

(
− ê
ŝĉ
c′+2eHgEs

′
)3 ( ê

ŝĉ
s′+2eHgEc

′
)

⎞

⎟⎠ ,

Z ′h0 : +
1

4
v̂2Hb0

(
q2, M̂Z′ , M̂h0

)
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×

⎛

⎜⎝

(
− êŝĉc

′+2eHgEs
′
)2 ( ê

ŝĉs
′+2eHgEc

′
)2

(
ê
ŝĉs
′+2eHgEc

′
)4

(
− êŝĉc

′+2eHgEs
′
) (
ê
ŝĉs
′+2eHgEc

′
)3

⎞

⎟⎠ ,

Z0S0 : +4v̂2Se
4
Sg
4
Eb0

(
q2, M̂Z0 , M̂S0

)
×

⎛

⎝
s′4

c′2s′2

c′s′3

⎞

⎠ ,

Z ′S0 : +4v̂2Se
4
Sg
4
Eb0

(
q2, M̂Z′ , M̂S0

)
×

⎛

⎝
c′2s′2

c′4

c′3s′

⎞

⎠ .

To simplify the calculations we have assumed here that the
scalar fields H and S do not mix in the potential, so that
the Higgs boson h0 comes only from the doubletH, and S0

comes only from the singlet S0.
The fermion contribution toΠZ1Z2(q

2) reads

Π ferm
ZiZj
(q2) =

∑

f

N (f)c

{
2
(
cZ
i

fLc
Zj

fR+ c
Zi

fRc
Zj

fL

)
m2f

× b0
(
q2,mf ,mf

)
+
(
cZ
i

fLc
Zj

fL + c
Zi

fRc
Zj

fR

)

×
[
4Ã
(
q2,mf ,mf

)
+
(
q2−2m2f

)

× b0
(
q2,mf ,mf

)]}
, (D.3)

where Nc is the color factor and the couplings c
Zi

fL, c
Zi

fR can
be read off from (20) and (21).

Appendix E: Loop functions

Here we define some loop functions to make the calcula-
tions presented in the text complete. We have

16π2a(m) =m2
(
ηdiv−1+ ln

m2

µ2

)
, (E.1)

16π2b0(q
2,m1,m2) = ηdiv+

∫ 1

0

dx

× ln
q2x(x−1)+xm21+(1−x)m

2
2

µ2
,

(E.2)

16π2b0(0,m1,m2) = ηdiv−1+
m21

m21−m
2
2

ln
m21
µ2

+
m22

m22−m
2
1

ln
m22
µ2
, (E.3)

Ã
(
q2,m1,m2

)
=−
1

6
a(m1)−

1

6
a(m2)

+
1

6

(
m21+m

2
2−
q2

2

)
b0
(
q2,m1,m2

)

+
m21−m

2
2

12q2
[
a(m1)−a(m2)−

(
m21−m

2
2

)

× b0
(
q2,m1,m2

)]

−
1

16π2
1

6
(m21+m

2
2−
q2

3
) . (E.4)

The divergent part of Ã(q2,m1,m2) is

16π2
[
Ã
(
q2,m1,m2

)]

div
=−

1

12
q2ηdiv , (E.5)

and Ã(0,m1,m2) is finite and reads

16π2Ã(0,m1,m2) =−
1

8

[
m21+m

2
2−
2m21m

2
2

m21−m
2
2

log
m21
m22

]

≡−
1

8
g(m1,m2) . (E.6)
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